No Arabic abstract
For a group G that splits as an amalgamation of A and B over a common subgroup C, there is an associated Waldhausen Nil-group, measuring the failure of Mayer-Vietoris for algebraic K-theory. Assume that (1) the amalgamation is acylindrical, and (2) the groups A,B,G satisfy the Farrell-Jones isomorphism conjecture. Then we show that the Waldhausen Nil-group splits as a direct sum of Nil-groups associated to certain (explicitly describable) infinite virtually cyclic subgroups of G. We note that a special case of an acylindrical amalgamation includes any amalgamation over a finite group C.
We prove that the Waldhausen Nil-group associated to a virtually cyclic groups that surjects onto the infinite dihedral group vanishes if and only if the corresponding Farrell Nil-group associated to the canonical index two subgroup is trivial. The proof uses the transfer map to establish one direction, and uses controlled pseudo-isotopy techniques of Farrell-Jones to establish the reverse implication.
For a finite volume geodesic polyhedron P in hyperbolic 3-space, with the property that all interior angles between incident faces are integral submultiples of Pi, there is a naturally associated Coxeter group generated by reflections in the faces. Furthermore, this Coxeter group is a lattice inside the isometry group of hyperbolic 3-space, with fundamental domain the original polyhedron P. In this paper, we provide a procedure for computing the lower algebraic K-theory of the integral group ring of such Coxeter lattices in terms of the geometry of the polyhedron P. As an ingredient in the computation, we explicitly calculate some of the lower K-groups of the dihedral groups and the product of dihedral groups with the cyclic group of order two.
A devissage--type theorem in algebraic $K$-theory is a statement that identifies the $K$-theory of a Waldhausen category $mathscr{C}$ in terms of the $K$-theories of a collection of Waldhausen subcategories of $mathscr{C}$ when a devissage condition about the existence of appropriate finite filtrations is satisfied. We distinguish between devissage theorems of emph{single type} and of emph{multiple type} depending on the number of Waldhausen subcategories and their properties. The main representative examples of such theorems are Quillens original devissage theorem for abelian categories (single type) and Waldhausens theorem on spherical objects for more general Waldhausen categories (multiple type). In this paper, we study some general aspects of devissage--type theorems and prove a general devissage theorem of single type and a general devissage theorem of multiple type.
We study a categorical construction called the cobordism category, which associates to each Waldhausen category a simplicial category of cospans. We prove that this construction is homotopy equivalent to Waldhausens $S_{bullet}$-construction and therefore it defines a model for Waldhausen $K$-theory. As an example, we discuss this model for $A$-theory and show that the cobordism category of homotopy finite spaces has the homotopy type of Waldhausens $A(*)$. We also review the canonical map from the cobordism category of manifolds to $A$-theory from this viewpoint.
Tate cohomology (as well as Borel homology and cohomology) of connective K-theory for $G=(mathbb{Z}/2)^n$ was completely calculated by Bruner and Greenlees. In this note, we essentially redo the calculation by a different, more elementary method, and we extend it to $p>2$ prime. We also identify the resulting spectra, which are products of Eilenberg-Mac Lane spectra, and finitely many finite Postnikov towers. For $p=2$, we also reconcile our answer completely with the result of Bruner and Greenlees, which is in a different form, and hence the comparison involves some non-trivial combinatorics.