Do you want to publish a course? Click here

Variable importance in binary regression trees and forests

109   0   0.0 ( 0 )
 Added by Hemant Ishwaran
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

We characterize and study variable importance (VIMP) and pairwise variable associations in binary regression trees. A key component involves the node mean squared error for a quantity we refer to as a maximal subtree. The theory naturally extends from single trees to ensembles of trees and applies to methods like random forests. This is useful because while importance values from random forests are used to screen variables, for example they are used to filter high throughput genomic data in Bioinformatics, very little theory exists about their properties.



rate research

Read More

Random forest (RF) methodology is one of the most popular machine learning techniques for prediction problems. In this article, we discuss some cases where random forests may suffer and propose a novel generalized RF method, namely regression-enhanced random forests (RERFs), that can improve on RFs by borrowing the strength of penalized parametric regression. The algorithm for constructing RERFs and selecting its tuning parameters is described. Both simulation study and real data examples show that RERFs have better predictive performance than RFs in important situations often encountered in practice. Moreover, RERFs may incorporate known relationships between the response and the predictors, and may give reliable predictions in extrapolation problems where predictions are required at points out of the domain of the training dataset. Strategies analogous to those described here can be used to improve other machine learning methods via combination with penalized parametric regression techniques.
Since their inception in the 1980s, regression trees have been one of the more widely used non-parametric prediction methods. Tree-structured methods yield a histogram reconstruction of the regression surface, where the bins correspond to terminal nodes of recursive partitioning. Trees are powerful, yet susceptible to over-fitting. Strategies against overfitting have traditionally relied on pruning greedily grown trees. The Bayesian framework offers an alternative remedy against overfitting through priors. Roughly speaking, a good prior charges smaller trees where overfitting does not occur. While the consistency of random histograms, trees and their ensembles has been studied quite extensively, the theoretical understanding of the Bayesian counterparts has been missing. In this paper, we take a step towards understanding why/when do Bayesian trees and their ensembles not overfit. To address this question, we study the speed at which the posterior concentrates around the true smooth regression function. We propose a spike-and-tree variant of the popular Bayesian CART prior and establish new theoretical results showing that regression trees (and their ensembles) (a) are capable of recovering smooth regression surfaces, achieving optimal rates up to a log factor, (b) can adapt to the unknown level of smoothness and (c) can perform effective dimension reduction when p>n. These results provide a piece of missing theoretical evidence explaining why Bayesian trees (and additive variants thereof) have worked so well in practice.
Random forests are one of the most popular machine learning methods due to their accuracy and variable importance assessment. However, random forests only provide variable importance in a global sense. There is an increasing need for such assessments at a local level, motivated by applications in personalized medicine, policy-making, and bioinformatics. We propose a new nonparametric estimator that pairs the flexible random forest kernel with local sufficient dimension reduction to adapt to a regression functions local structure. This allows us to estimate a meaningful directional local variable importance measure at each prediction point. We develop a computationally efficient fitting procedure and provide sufficient conditions for the recovery of the splitting directions. We demonstrate significant accuracy gains of our proposed estimator over competing methods on simulated and real regression problems. Finally, we apply the proposed method to seasonal particulate matter concentration data collected in Beijing, China, which yields meaningful local importance measures. The methods presented here are available in the drforest Python package.
122 - Shrisha Rao , Babita Grover 2008
A new 2-parameter family of central structures in trees, called central forests, is introduced. Miniekas $m$-center problem and McMorriss and Reids central-$k$-tree can be seen as special cases of central forests in trees. A central forest is defined as a forest $F$ of $m$ subtrees of a tree $T$, where each subtree has $k$ nodes, which minimizes the maximum distance between nodes not in $F$ and those in $F$. An $O(n(m+k))$ algorithm to construct such a central forest in trees is presented, where $n$ is the number of nodes in the tree. The algorithm either returns with a central forest, or with the largest $k$ for which a central forest of $m$ subtrees is possible. Some of the elementary properties of central forests are also studied.
Bayesian Additive Regression Trees (BART) are non-parametric models that can capture complex exogenous variable effects. In any regression problem, it is often of interest to learn which variables are most active. Variable activity in BART is usually measured by counting the number of times a tree splits for each variable. Such one-way counts have the advantage of fast computations. Despite their convenience, one-way counts have several issues. They are statistically unjustified, cannot distinguish between main effects and interaction effects, and become inflated when measuring interaction effects. An alternative method well-established in the literature is Sobol indices, a variance-based global sensitivity analysis technique. However, these indices often require Monte Carlo integration, which can be computationally expensive. This paper provides analytic expressions for Sobol indices for BART posterior samples. These expressions are easy to interpret and are computationally feasible. Furthermore, we will show a fascinating connection between first-order (main-effects) Sobol indices and one-way counts. We also introduce a novel ranking method, and use this to demonstrate that the proposed indices preserve the Sobol-based rank order of variable importance. Finally, we compare these methods using analytic test functions and the En-ROADS climate impacts simulator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا