Do you want to publish a course? Click here

Tidal Love numbers of neutron stars

140   0   0.0 ( 0 )
 Added by Tanja Hinderer
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

For a variety of fully relativistic polytropic neutron star models we calculate the stars tidal Love number k2. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n~0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l=2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second order differential equation for the perturbation to the metric coefficient g_tt, and matching the exterior solution to the asymptotic expansion of the metric in the stars local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to ~24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.



rate research

Read More

Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star - neutron star inspirals. In this early adiabatic regime, the influence of a neutron stars internal structure on the phase of the waveform depends only on a single parameter lambda of the star related to its tidal Love number, namely the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We analyze the information obtainable from gravitational wave frequencies smaller than a cutoff frequency of 400 Hz, where corrections to the internal-structure signal are less than 10 percent. For an inspiral of two non-spinning 1.4 solar mass neutron stars at a distance of 50 Mpc, LIGO II detectors will be able to constrain lambda to lambda < 2.0 10^{37} g cm^2 s^2 with 90% confidence. Fully relativistic stellar models show that the corresponding constraint on radius R for 1.4 solar mass neutron stars would be R < 13.6 km (15.3 km) for a n=0.5 (n=1.0) polytrope.
We investigate the properties of relativistic stars made of dark energy. We model stellar structure assuming i) isotropic perfect fluid and ii) a dark energy inspired equation of state, the generalized equation of state of Chaplygin gas, as we will be calling it. The mass-to-radius profiles, the tidal Love numbers as well as the ten lowest radial oscillation modes are computed. Causality, stability and energy conditions are also discussed.
The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise arbitrary, multipolar tidal environment. By solving the static Teukolsky equation for the gauge-invariant Weyl scalar $psi_0$, and by reconstructing the corresponding metric perturbation in an ingoing radiation gauge, for a general harmonic index $ell$, we compute the linear response of a Kerr black hole to the tidal field. This linear response vanishes identically for a Schwarzschild black hole and for an axisymmetric perturbation of a spinning black hole. For a nonaxisymmetric perturbation of a spinning black hole, however, the linear response does not vanish, and it contributes to the Geroch-Hansen multipole moments of the perturbed Kerr geometry. As an application, we compute explicitly the rotational black hole tidal Love numbers that couple the induced quadrupole moments to the quadrupolar tidal fields, to linear order in the black hole spin, and we introduce the corresponding notion of tidal Love tensor. Finally, we show that those induced quadrupole moments are closely related to the well-known physical phenomenon of tidal torquing of a spinning body interacting with a tidal gravitational environment.
The tidal Love numbers (TLNs) encode the deformability of a self-gravitating object immersed in a tidal environment and depend significantly both on the objects internal structure and on the dynamics of the gravitational field. An intriguing result in classical general relativity is the vanishing of the TLNs of black holes. We extend this result in three ways, aiming at testing the nature of compact objects: (i) we compute the TLNs of exotic compact objects, including different families of boson stars, gravastars, wormholes, and other toy models for quantum corrections at the horizon scale. In the black-hole limit, we find a universal logarithmic dependence of the TLNs on the location of the surface; (ii) we compute the TLNs of black holes beyond vacuum general relativity, including Einstein-Maxwell, Brans-Dicke and Chern-Simons gravity; (iii) We assess the ability of present and future gravitational-wave detectors to measure the TLNs of these objects, including the first analysis of TLNs with LISA. Both LIGO, ET and LISA can impose interesting constraints on boson stars, while LISA is able to probe even extremely compact objects. We argue that the TLNs provide a smoking gun of new physics at the horizon scale, and that future gravitational-wave measurements of the TLNs in a binary inspiral provide a novel way to test black holes and general relativity in the strong-field regime.
It was shown recently that the static tidal response coefficients, called Love numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm this result and extend it to the case of spin-0 and spin-1 perturbations. We compute the static response of Kerr black holes to scalar, electromagnetic, and gravitational fields at all orders in black hole spin. We use the unambiguous and gauge-invariant definition of Love numbers and their spin-0 and spin-1 analogs as Wilson coefficients of the point particle effective field theory. This definition also allows one to clearly distinguish between conservative and dissipative response contributions. We demonstrate that the behavior of Kerr black holes responses to spin-0 and spin-1 fields is very similar to that of the spin-2 perturbations. In particular, static conservative responses vanish identically for spinning black holes. This implies that vanishing Love numbers are a generic property of black holes in four-dimensional general relativity. We also show that the dissipative part of the response does not vanish even for static perturbations due to frame-dragging.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا