Do you want to publish a course? Click here

Eclipsing Binaries Showing Light Time Effect

88   0   0.0 ( 0 )
 Added by Petr Zasche
 Publication date 2007
  fields Physics
and research's language is English
 Authors Petr Zasche




Ask ChatGPT about the research

Four eclipsing binaries, which show apparent changes of period, have been studied with respect to a possible presence of the light time effect. With a least squares method we calculated new light elements of these systems, the mass function of the predicted third body, and its minimum mass. We discuss the probability of the presence of such bodies in terms of mass function, changes in radial velocity and third light in solution of light curves.



rate research

Read More

A sample of 542 eclipsing binaries (EBs) with periods shorter than 2 d were selected from the Microlensing Observations in Astrophysics (MOA) EB catalogue (Li et al. 2017) for eclipse-time variation analysis. For this sample we were able to obtain the time series from MOA-II that span 9.5yr. We discovered 91 EBs, out of the 542 EBs, with detected light-travel-time effect signals suggesting the presence of tertiary companions of orbiting periods from 250 d-28 yr. The frequency of EBs with tertiary companions in our sample increases as the period decreases and reaches a value of 0.65 for contact binaries with periods shorter than 0.3 d. If only the contact binaries of periods < 0.26d are considered, the frequency even goes to the unit. Our results suggest that contact binaries with periods close to the 0.22-d contact binary limit are commonly accompanied by relatively close tertiary companions.
We present the construction of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern detection algorithm. We focus on the targeted identification of eclipsing binaries that demonstrate a feature known as the OConnell effect. Our proposed methodology maps stellar variable observations to a new representation known as distribution fields (DFs). Given this novel representation, we develop a metric learning technique directly on the DF space that is capable of specifically identifying our stars of interest. The metric is tuned on a set of labeled eclipsing binary data from the Kepler survey, targeting particular systems exhibiting the OConnell effect. The result is a conservative selection of 124 potential targets of interest out of the Villanova Eclipsing Binary Catalog. Our framework demonstrates favorable performance on Kepler eclipsing binary data, taking a crucial step in preparing the way for large-scale data volumes from next-generation telescopes such as LSST and SKA.
Photometric observations in V and I bands and low-dispersion spectra of ten ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NSVS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modeling and analysis of our observations revealed that: (i) Eight targets have overcontact configurations with considerable fillout factor (up to 0.5) while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62+224448.5 exhibit total eclipses and their parameters could be assumed as well-determined; (v) NSVS 2729229 shows emission in the H_{alpha} line. Masses, radii and luminosities of the stellar components were estimated by the empirical relation period, orbital axis for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.
In this work we present a system for the automatic classification of the light curves of eclipsing binaries. This system is based on a classification scheme that aims to separate eclipsing binary sistems according to their geometrical configuration in a modified version of the traditional classification scheme. The classification is performed by a Bayesian ensemble of neural networks trained with {em Hipparcos} data of seven different categories including eccentric binary systems and two types of pulsating light curve morphologies.
100 - F. Acerbi , R. Michel , C. Barani 2019
We present the results of our study of the eclipsing binary systems CSS J112237.1+395219, LINEAR 1286561 and LINEAR 2602707 based on new CCD $B$, $V$, $R_c$ and $I_c$ complete light curves. The ultra-short period nature of the stars citep{Drake2014} is confirmed and the systems periods are revised. The light curves were modelled using the 2005 version of the Wilson-Devinney code. When necessary, cool spots on the surface of the primary component were introduced to account for asymmetries in the light curves. As a result, we found that CSS J112237.1+395219 is a W UMa type contact binary system belonging to W subclass with a mass ratio of $q=1.61$ and a shallow degree of contact of 14.8% where the primary component is hotter than the secondary one by $500K$. LINEAR 1286561 and LINEAR 2602707 are detached binary systems with mass ratios $q=3.467$ and $q=0.987$ respectively. These detached systems are low-mass M-type eclipsing binaries of similar temperatures. The marginal contact, the fill-out factor and the temperature difference between components of CSS J112237.1+395219 suggest that this system may be at a key evolutionary state predicted by the Thermal Relaxation Oscillation theory (TRO). From the estimated absolute parameters we conclude that our systems share common properties with others ultra-short period binaries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا