Do you want to publish a course? Click here

Reusable Vernam Cipher with Quantum Media

149   0   0.0 ( 0 )
 Added by Gui Lu Long
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

A revised version will be uploaded later. In this Letter, it is shown that the one-time-pad key in the Vernam cipher can be repeatedly used with unconditional security using quantum media. The security proof is given with two explicit protocols, and the error rate threshold is analyzed.



rate research

Read More

Secure communication is a necessity. However, encryption is commonly only applied to the upper layers of the protocol stack. This exposes network information to eavesdroppers, including the channels type, data rate, protocol, and routing information. This may be solved by encrypting the physical layer, thereby securing all subsequent layers. In order for this method to be practical, the encryption must be quick, preserve bandwidth, and must also deal with the issues of noise mitigation and synchronization. In this paper, we present the Vernam Physical Signal Cipher (VPSC): a novel cipher which can encrypt the harmonic composition of any analog waveform. The VPSC accomplished this by applying a modified Vernam cipher to the signals frequency magnitudes and phases. This approach is fast and preserves the signals bandwidth. In the paper, we offer methods for noise mitigation and synchronization, and evaluate the VPSC over a noisy wireless channel with multi-path propagation interference.
A new mathematical and computational technique for calculating quantum vacuum expectation values of energy and momentum densities associated with electromagnetic fields in bounded domains containing inhomogeneous media is discussed. This technique is illustrated by calculating the mode contributions to the difference in the vacuum force expectation between opposite ends of an inhomogeneous dielectric non-dispersive medium confined to a perfectly conducting rigid box.
We study theoretically how multiple scattering of light in a disordered medium can spontaneously generate quantum correlations. In particular we focus on the case where the input state is Gaussian and characterize the correlations between two arbitrary output modes. As there is not a single all-inclusive measure of correlation, we characterise the output correlations with three measures: intensity fluctuations, entanglement, and quantum discord. We found that, while a single mode coherent state input can not produce quantum correlations, any other Gaussian input will produce them in one form or another. This includes input states that are usually regarded as more classical than coherent ones, such as thermal states, which will produce a non zero quantum discord.
Active optical media leading to interaction Hamiltonians of the form $ H = tilde{lambda}, (a + a^{dagger})^{zeta}$ represent a crucial resource for quantum optical technology. In this paper, we address the characterization of those nonlinear media using quantum probes, as opposed to semiclassical ones. In particular, we investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tilde{lambda}$ and of the nonlinearity order $zeta$. Upon using tools from quantum estimation, we show that: i) the two parameters are compatible, i.e. the may be jointly estimated without additional quantum noise; ii) the use of squeezed probes improves precision at fixed overall energy of the probe; iii) for low energy probes, squeezed vacuum represent the most convenient choice, whereas for increasing energy an optimal squeezing fraction may be determined; iv) using optimized quantum probes, the scaling of the corresponding precision with energy improves, both for individual and joint estimation of the two parameters, compared to semiclassical coherent probes. We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
In the quantum process of stimulated Raman scattering (SRS), a laser photon propagating in a resonance medium undergoes multifold
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا