No Arabic abstract
We show that asymptotically hyperbolic initial data satisfying smallness conditions in dimensions $nge 3$, or fast decay conditions in $nge 5$, or a genericity condition in $nge 9$, can be deformed, by a deformation which is supported arbitrarily far in the asymptotic region, to ones which are exactly Kottler (Schwarzschild- adS) in the asymptotic region.
Rigidity results for asymptotically locally hyperbolic manifolds with lower bounds on scalar curvature are proved using spinor methods related to the Witten proof of the positive mass theorem. The argument is based on a study of the Dirac operator defined with respect to the Killing connection. The existence of asymptotic Killing spinors is related to the spin structure on the end. The expression for the mass is calculated and proven to vanish for conformally compact Einstein manifolds with conformal boundary a spherical space form, giving rigidity. In the 4-dimensional case, the signature of the manifold is related to the spin structure on the end and explicit formulas for the relevant invariants are given.
We show any Riemannian curvature model can be geometrically realized by a manifold with constant scalar curvature. We also show that any pseudo-Hermitian curvature model, para-Hermitian curvature model, hyper-pseudo-Hermitian curvature model, or hyper-para-Hermitian curvature model can be realized by a manifold with constant scalar and *-scalar curvature.
We study the problem of deforming a Riemannian metric to a conformal one with nonzero constant scalar curvature and nonzero constant boundary mean curvature on a compact manifold of dimension $ngeq 3$. We prove the existence of such conformal metrics in the cases of $n=6,7$ or the manifold is spin and some other remaining ones left by Escobar. Furthermore, in the positive Yamabe constant case, by normalizing the scalar curvature to be $1$, there exists a sequence of conformal metrics such that their constant boundary mean curvatures go to $+infty$.
Some recent results obtained by the author and collaborators about QFT in asymptotically flat spacetimes at null infinity are summarized and reviewed. In particular it is focused on the physical properties of ground states in the bulk induced by the BMS-invariant state defined at null infinity.
A connected Riemannian manifold M has constant vector curvature epsilon, denoted by cvc(epsilon), if every tangent vector v in TM lies in a 2-plane with sectional curvature epsilon. By scaling the metric on M, we can always assume that epsilon = -1, 0, or 1. When the sectional curvatures satisfy the additional bound that each sectional curvature is less than or equal to epsilon, or that each sectional curvature is greater than or equal to epsilon, we say that, epsilon, is an extremal curvature. In this paper we study three-manifolds with constant vector curvature. Our main results show that finite volume cvc(epsilon) three-manifolds with extremal curvature epsilon are locally homogenous when epsilon=-1 and admit a local product decomposition when epsilon=0. As an application, we deduce a hyperbolic rank-rigidity theorem.