Do you want to publish a course? Click here

Not gate in a cis-trans photoisomerization model

442   0   0.0 ( 0 )
 Added by Sugny Dominique
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We numerically study the implementation of a NOT gate by laser pulses in a model molecular system presenting two electronic surfaces coupled by non adiabatic interactions. The two states of the bit are the fundamental states of the cis-trans isomers of the molecule. The gate is classical in the sense that it involves a one-qubit flip so that the encoding of the outputs is based on population analysis which does not take the phases into account. This gate can also be viewed as a double photo-switch process with the property that the same electric field controls the two isomerizations. As an example, we consider one-dimensional cuts in a model of the retinal in rhodopsin already proposed in the literature. The laser pulses are computed by the Multi Target Optimal Control Theory with chirped pulses as trial fields. Very high fidelities are obtained. We also examine the stability of the control when the system is coupled to a bath of oscillators modelled by an Ohmic spectral density. The bath correlation time scale being smaller than the pulse duration the dynamics is carried out in the Markovian approximation.



rate research

Read More

As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8+-1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation.
During polymer translocation driven by e.g. voltage drop across a nanopore, the segments in the cis-side is incessantly pulled into the pore, which are then pushed out of it into the trans-side. This pulling and pushing polymer segments are described in the continuum level by nonlinear transport processes known, respectively, as fast and slow diffusions. By matching solutions of both sides through the mass conservation across the pore, we provide a physical basis for the cis and trans dynamical asymmetry, a feature repeatedly reported in recent numerical simulations. We then predict how the total driving force is dynamically allocated between cis (pulling) and trans (pushing) sides, demonstrating that the trans-side event adds a finite-chain length effect to the dynamical scaling, which may become substantial for weak force and/or high pore friction cases.
We present the first demonstration of a CNOT gate using neutral atoms. Our implementation of the CNOT uses Rydberg blockade interactions between neutral atoms held in optical traps separated by >8 murm m. We measure CNOT fidelities of F=0.73 and 0.72 using two different gate protocols, and show by measurement of parity oscillations that the gate can be used to generate two-atom states with fidelity at the threshold for entanglement. We anticipate that the long range nature of the Rydberg interaction will be attractive for future extensions of this work to multi-qubit systems.
120 - Chern Chuang , Paul Brumer 2020
The photoisomerization reaction of the retinal chromophore in rhodopsin was computationally studied using a two-state two-mode model coupled to thermal baths. Reaction quantum yields at the steady state (10 ps and beyond) were found to be considerably different than their transient values, suggesting a weak correlation between transient and steady-state dynamics in these systems. Significantly, the steady-state quantum yield was highly sensitive to minute changes in system parameters, while transient dynamics was nearly unaffected. Correlation of such sensitivity with standard level spacing statistics of the nonadiabatic vibronic system suggests a possible origin in quantum chaos. The feasibility of experimental observation of this phenomenon and its implications in condensed-phase photochemistry and biological light sensing are discussed.
70 - Kai Xu , Wen Ning , Xin-Jie Huang 2020
Holonomies, arising from non-Abelian geometric transformations of quantum states in Hilbert space, offer a promising way for quantum computation. These holonomies are not commutable and thus can be used for the realization of a universal set of quantum logic gates, where the global geometric feature may result in some noise-resilient advantages. Here we report the first on-chip realization of a non-Abelian geometric controlled-Not gate in a superconducting circuit, which is a building block for constructing a holonomic quantum computer. The conditional dynamics is achieved in an all-to-all connected architecture involving multiple frequency-tunable superconducting qubits controllably coupled to a resonator; a holonomic gate between any two qubits can be implemented by tuning their frequencies on resonance with the resonator and applying a two-tone drive to one of them. This gate represents an important step towards the all-geometric realization of scalable quantum computation on a superconducting platform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا