Do you want to publish a course? Click here

Prospects of cold dark matter searches with an ultra-low-energy germanium detector

164   0   0.0 ( 0 )
 Added by Henry Tsz-King Wong
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The report describes the research program on the development of ultra-low-energy germanium detectors, with emphasis on WIMP dark matter searches. A threshold of 100 eV is achieved with a 20 g detector array, providing a unique probe to the low-mas WIMP. Present data at a surface laboratory is expected to give rise to comparable sensitivities with the existing limits at the $rm{5 - 10 GeV}$ WIMP-mass range. The projected parameter space to be probed with a full-scale, kilogram mass-range experiment is presented. Such a detector would also allow the studies of neutrino-nucleus coherent scattering and neutrino magnetic moments.



rate research

Read More

112 - Henry T. Wong 2008
The status and plans of a research program on the development of ultra-low-energy germanium detectors with sub-keV sensitivities are reported. We survey the scientific goals which include the observation of neutrino-nucleus coherent scattering, the studies of neutrino magnetic moments, as well as the searches of WIMP dark matter. In particular, a threshold of 100-200 eV and a sub-keV background comparable to underground experiments were achieved with prototype detectors. New limits were set for WIMPs with mass between 3-6 GeV. The prospects of the realization of full-scale experiments are discussed.
An energy threshold of (220$pm$10) eV was achieved at an efficiency of 50% with a four-channel ultra-low-energy germanium detector each with an active mass of 5 gcite{wimppaper}. This provides a unique probe to WIMP dark matter with mass below 10 GeV. With low background data taken at the Kuo-Sheng Laboratory, constraints on WIMPs in the galactic halo were derived. Both spin-independent WIMP-nucleon and spin-dependent WIMP-neutron bounds improve over previous results for WIMP mass between 3$-$6 GeV. These results, together with those on spin-dependent couplings, will be presented. Sensitivities for full-scale experiments were projected. This detector technique makes the unexplored sub-keV energy window accessible for new neutrino and dark matter experiments.
We present projections for future collider searches for dark matter produced in association with bottom or top quarks. Such production channels give rise to final states with missing transverse energy and one or more b-jets. Limits are given assuming an effective scalar operator coupling dark matter to quarks, where the dedicated analysis discussed here improves significantly over a generic monojet analysis. We give updated results for an anticipated high-luminosity LHC run at 14 TeV and for a 33 TeV hadron collider.
We report results from searches of pseudoscalar and vector bosonic super-weakly interacting massive particles (super-WIMP) in the TEXONO experiment at the Kuo-Sheng Nuclear Power Station, using 314.15 kg days of data from $n$-type Point-Contact Germanium detector. The super-WIMPs are absorbed and deposit total energy in the detector, such that the experimental signatures are spectral peaks corresponding to the super-WIMP mass. Measured data are compatible with the background model, and no significant excess of super-WIMP signals are observed. We derived new upper limits on couplings of electrons with the pseudoscalar and vector bosonic super-WIMPs in the sub-keV mass region, assuming they are the dominant contributions to the dark matter density of our galaxy.
The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا