Perturbations In A Non-Uniform Dark Energy Fluid: Equations Reveal Effects of Modified Gravity and Dark Matter


Abstract in English

We propose a unified single-field description of the galactic Dark Matter and various uniform scalar fields for the inflation and cosmological constant. The two types of effects could originate from a fluid of both spatially and temporally varying Vacuum Energy if the vacuum has an uneven pressure caused by a photon-like vector field (of perhaps an unstable massive boson). We propose a most general Lagrangian with a {bf N}on-{bf u}niform Cosmological Constant for this vacuum fluid (dubbed as a Nu-Lambda fluid), working within the framework of Einsteinian gravity. This theory includes a continuous spectrum of plausible dark energy theories and gravity theories, e.g., inflation, quintessence, k-essence, f(R), Generalized Einstein-Aether f(K), MOND, TeVeS, BSTV etc. theories. It also suggests new models such as a certain f(K+R) model, which suggests intriguing corrections to MOND depending of redshift and density. Some specific constructions of the Nu-Lambda fluid (e.g., Zhaos V-$Lambda$ model) closely resemble the $Lambda$CDM cosmology on large scale, but fit galaxy rotation curves as good as MOND. Perturbed Einstein Equations in a simple $f(K_4)$ model are solvable and show effects of a DM coupled to DE. Incorporating the perturbation equations here into standard simulations for cosmological structure growth offers a chance to falsify examples of the Nu-Lambda theories.

Download