Tunnel ionization of room-temperature D$_2$ in an ultrashort (12 femtosecond) near infra-red (800 nm) pump laser pulse excites a vibrational wavepacket in the D2+ ions; a rotational wavepacket is also excited in residual D2 molecules. Both wavepacket types are collapsed a variable time later by an ultrashort probe pulse. We isolate the vibrational wavepacket and quantify its evolution dynamics through theoretical comparison. Requirements for quantum computation (initial coherence and quantum state retrieval) are studied using this well-defined (small number of initial states at room temperature, initial wavepacket spatially localized) single-electron molecular prototype by temporally stretching the pump and probe pulses.