Dirac equation written on the boundary of the Nutku helicoid space consists of a system of ordinary differential equations. We tried to analyze this system and we found that it has a higher singularity than those of the Heuns equations which give the solutions of the Dirac equation in the bulk. We also lose an independent integral of motion on the boundary. This facts explain why we could not find the solution of the system on the boundary in terms of known functions. We make the stability analysis of the helicoid and catenoid cases and end up with an appendix which gives a new example where one encounters a form of the Heun equation.
We study the solutions of the Dirac equation in the background of the Nutku helicoid metric. This metric has curvature singularities, which necessitates imposing a boundary to exclude this point. We use the Atiyah-Patodi-Singer non local spectral boundary conditions for both the four and the five dimensional manifolds.
Heun-type exact solutions emerge for both the radial and the angular equations for the case of a scalar particle coupled to the zero mass limit of both the Kerr and Kerr-(anti)de-Sitter spacetime. Since any type D metric has Heun-type solutions, it is interesting that this property is retained in the zero mass case. This work further refutes the claims that $M$ going to zero limit of the Kerr metric is both locally and globally the same as the Minkowski metric.
The Abstract Boundary singularity theorem was first proven by Ashley and Scott. It links the existence of incomplete causal geodesics in strongly causal, maximally extended spacetimes to the existence of Abstract Boundary essential singularities, i.e., non-removable singular boundary points. We give two generalizations of this theorem: the first to continuous causal curves and the distinguishing condition, the second to locally Lipschitz curves in manifolds such that no inextendible locally Lipschitz curve is totally imprisoned. To do this we extend generalized affine parameters from $C^1$ curves to locally Lipschitz curves.
Continuing work initiated in an earlier publication [Yamada, Tsuchiya, and Asada, Phys. Rev. D 91, 124016 (2015)], we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein-Infeld-Hoffman form of equations of motion for $N$-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e. we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these always precess with two frequency modes; the same with the orbital frequency and the slightly different one by the 1PN effect. The same condition of stability with the previous one, which is valid even for the general perturbations, is obtained from the lying perturbations.
In this paper we examine spectral properties of a family of periodic singular Sturm-Liouville problems which are highly non-self-adjoint but have purely real spectrum. The problem originated from the study of the lubrication approximation of a viscous fluid film in the inner surface of a rotating cylinder and has received a substantial amount of attention in recent years. Our main focus will be the determination of Schatten class inclusions for the resolvent operator and regularity properties of the associated evolution equation.
T. Birkandan
,M. Hortacsu
.
(2008)
.
"Singularity Structure and Stability Analysis of the Dirac Equation on the Boundary of the Nutku Helicoid Solution"
.
Tolga Birkandan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا