Do you want to publish a course? Click here

Order estimation of Markov chains

156   0   0.0 ( 0 )
 Added by Gusztav Morvai
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

We describe estimators $chi_n(X_0,X_1,...,X_n)$, which when applied to an unknown stationary process taking values from a countable alphabet ${cal X}$, converge almost surely to $k$ in case the process is a $k$-th order Markov chain and to infinity otherwise.



rate research

Read More

We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete finite Markov chain, for which two copies started in different states can be coupled to meet almost surely in finite time, yet their distributions keep a total variation distance bounded away from 0, even in the limit as time goes off to infinity. We show that the supremum of total variation distance kept in this context is $frac12$.
257 - C. Landim 2018
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.
We introduce the space of virtual Markov chains (VMCs) as a projective limit of the spaces of all finite state space Markov chains (MCs), in the same way that the space of virtual permutations is the projective limit of the spaces of all permutations of finite sets. We introduce the notions of virtual initial distribution (VID) and a virtual transition matrix (VTM), and we show that the law of any VMC is uniquely characterized by a pair of a VID and VTM which have to satisfy a certain compatibility condition. Lastly, we study various properties of compact convex sets associated to the theory of VMCs, including that the Birkhoff-von Neumann theorem fails in the virtual setting.
134 - G. Morvai , B. Weiss 2007
Let ${X_n}_{n=0}^{infty}$ be a stationary real-valued time series with unknown distribution. Our goal is to estimate the conditional expectation of $X_{n+1}$ based on the observations $X_i$, $0le ile n$ in a strongly consistent way. Bailey and Ryabko proved that this is not possible even for ergodic binary time series if one estimates at all values of $n$. We propose a very simple algorithm which will make prediction infinitely often at carefully selected stopping times chosen by our rule. We show that under certain conditions our procedure is strongly (pointwise) consistent, and $L_2$ consistent without any condition. An upper bound on the growth of the stopping times is also presented in this paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا