No Arabic abstract
Aims: The low persistent X-ray burster source SLX 1737-282 is classified as an ultra-compact binary candidate. We compare the data on SLX 1737-282 with the other similar objects and attempt to derive constraints on the physical processes responsible for the formation of intermediate long bursts. Methods: Up to now only three intermediate long bursts, all with duration between ~15-30 minutes, have been recorded for SLX 1737-282. The properties of two intermediate long X-ray bursts observed by INTEGRAL from SLX 1737-282 are investigated. The broadband spectrum of the persistent emission in the 3-100 keV energy band is studied with the INTEGRAL data. Results: The persistent emission is measured to be < 1% Eddington luminosity. From the photospheric radius expansion observed during the bursts we derive the source distance at 7.3 kpc. The observed intermediate long burst properties from SLX 1737-282 are consistent with helium ignition at the column depth of 7-8 x 10E-9 g cm-2 and a burst energy release of 1E41 erg. The apparent recurrence time of ~80 days between the intermediate long bursts from SLX 1737-282 suggests a regime of unstable burning of a thick, pure helium layer slowly accreted from a helium donor star.
We report on a detailed study of the spectral and temporal properties of the neutron star low mass X-ray binary SLX 1737-282, which is located only ~1degr away from Sgr A. The system is expected to have a short orbital period, even within the ultra-compact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 years apart. We infer (0.5-10 keV) X-ray luminosities in the range 3-6 x10^35erg s-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) black body component plus a Comptonized emission component with {Gamma} ~1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ~ 20 per cent fractional root mean square amplitude of the fast variability (0.1 - 7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is >7 keV for the Suzaku observation, but it is measured to be as low as ~2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001 - 7 Hz). Finally, we investigated the origin of the low frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to 65 degr unless the orbital period is longer than 11 hr (i.e. the length of the XMM-Newton observation).
The discovery of a number of gamma-ray bursts with duration exceeding 1,000 seconds, in particular the exceptional case of GRB 111209A with a duration of about 25,000 seconds, has opened the question on whether these bursts form a new class of sources, the so called {em ultra-long} GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. In this Letter, using the long GRB sample detected by {em Swift}, we investigate on the statistical properties of ultra-long GRBs and compare them with the overall long burst population. We discuss also on the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 seconds, for which a Wolf Rayet star progenitor is usually invoked. We interpret this result as an indication that an alternative scenario has to be found in order to explain the ultra-long GRB extreme energetics, as well as the mass reservoir and its size that can feed the central engine for such a long time.
A lightning surge generator generates a high voltage surge with 1.2 microsec. rise time. The generator fed a spark gap of two pointed electrodes at 0.7 to 1.2 m distances. Gap breakdown occurred between 0.1 and 3 microsec. after the maximum generator voltage of approximately 850 kV. Various scintillator detectors with different response time recorded bursts of hard radiation in nearly all surges. The bursts were detected over the time span between approximately half of the maximum surge voltage and full gap breakdown. The consistent timing of the bursts with the high-voltage surge excluded background radiation as source for the high intensity pulses. In spite of the symmetry of the gap, negative surges produced more intense radiation than positive. This has been attributed to additional positive discharges from the measurement cabinet which occurred for negative surges. Some hard radiation signals were equivalent to several MeV. Pile-up occurs of lesser energy X-ray quanta, but still with a large fraction of these with an energy of the order of 100 keV. The bursts occurred within the 4 nanosec. time resolution of the fastest detector. The relation between the energy of the X-ray quanta and the signal from the scintillation detector is quite complicated, as shown by the measurements.
We have obtained Hubble Space Telescope/STIS low-resolution ultraviolet spectra of the X-ray pulsar 4U 1626-67 (=KZ TrA); 4U 1626-67 is unusual even among X-ray pulsars due to its ultra-short binary period (P=41.4 min) and remarkably low mass-function (<1.3e-6 Msun). The far-UV spectrum was exposed for a total of 32ks and has sufficient signal-to-noise to reveal numerous broad emission and prominent narrower absorption lines. Most of the absorption lines are consistent in strength with a purely interstellar origin. However, there is evidence that both CI and CIV require additional absorbing gas local to the system. In emission, the usual prominent lines of NV and HeII are absent, whilst both OIV and OV are relatively strong. We further identify a rarely seen feature at ~1660A as the OIII] multiplet. Our ultraviolet spectra therefore provide independent support for the recent suggestion that the mass donor is the chemically fractionated core of either a C-O-Ne or O-Ne-Mg white dwarf; this was put forward to explain the results of Chandra high-resolution X-ray spectroscopy. The velocity profiles of the ultraviolet lines are in all cases broad and/or flat-topped, or perhaps even double-peaked for the highest ionization cases of O; in either case the ultraviolet line profiles are in broad agreement with the Doppler pairs found in the X-ray spectra. Both the X-ray and far-UV lines are plausibly formed in (or in an corona just above) a Keplerian accretion disc; the combination of ultraviolet and X-ray spectral data may provide a rich data set for follow-on detailed models of the disk dynamics and ionization structure in this highly unusual low-mass X-ray pulsar system.
We investigate the long-term spectral variability in the ultra-luminous X-ray source Holmberg IX X--1. By analyzing the data from eight {it Suzaku} and 13 {it XMM-Newton} observations conducted between 2001 and 2015, we perform a detailed spectral modeling for all spectra with simple models and complex physical models. We find that the spectra can be well explained by a disc plus thermal Comptonization model. Applying this model, we unveil correlations between the X-ray luminosity ($L_{rm X}$) and the spectral parameters. Among the correlations, a particular one is the statistically significant positive correlation between $L_{rm X}$ and the photon index ($Gamma$), while at the high luminosities of $> 2times10^{40},{rm~erg s}^{-1}$, the source becomes marginally hard and that results a change in the slope of the $Gamma - L_{rm X}$ correlation. Similar variability behavior is observed in the optical depth of the source around $L_{rm X} sim 2times10^{40},{rm~erg s}^{-1}$ as the source becomes more optically thick. We consider the scenario that a corona covers the inner part of the disc, and the correlations can be explained as to be driven by the variability of seed photons from the disc input into the corona. On the basis of the disc-corona model, we discuss the physical processes that are possibly indicated by the variability of the spectral parameters. Our analysis reveals the complex variability behavior of Holmberg IX X--1 and the variability mechanism is likely related to the geometry of the X-ray emitting regions.