Do you want to publish a course? Click here

Zero-rate feedback can achieve the empirical capacity

282   0   0.0 ( 0 )
 Added by Anand Sarwate
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

The utility of limited feedback for coding over an individual sequence of DMCs is investigated. This study complements recent results showing how limited or noisy feedback can boost the reliability of communication. A strategy with fixed input distribution $P$ is given that asymptotically achieves rates arbitrarily close to the mutual information induced by $P$ and the state-averaged channel. When the capacity achieving input distribution is the same over all channel states, this achieves rates at least as large as the capacity of the state averaged channel, sometimes called the empirical capacity.



rate research

Read More

The zero-error feedback capacity of the Gelfand-Pinsker channel is established. It can be positive even if the channels zero-error capacity is zero in the absence of feedback. Moreover, the error-free transmission of a single bit may require more than one channel use. These phenomena do not occur when the state is revealed to the transmitter causally, a case that is solved here using Shannon strategies. Cost constraints on the channel inputs or channel states are also discussed, as is the scenario where---in addition to the message---also the state sequence must be recovered.
The feedback sum-rate capacity is established for the symmetric $J$-user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of the factorization of a convex envelope of Geng and Nair (2014). The converse bound matches the achievable sum-rate of the Fourier-Modulated Estimate Correction strategy of Kramer (2002).
We introduce a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes our method exploits code symmetry. In particular, the technique applies to any sequence of linear codes where the blocklengths are strictly increasing, the code rates converge, and the permutation group of each code is doubly transitive. In other words, we show that symmetry alone implies near-optimal performance. An important consequence of this result is that a sequence of Reed-Muller codes with increasing blocklength and converging rate achieves capacity. This possibility has been suggested previously in the literature but it has only been proven for cases where the limiting code rate is 0 or 1. Moreover, these results extend naturally to all affine-invariant codes and, thus, to extended primitive narrow-sense BCH codes. This also resolves, in the affirmative, the existence question for capacity-achieving sequences of binary cyclic codes. The primary tools used in the proof are the sharp threshold property for symmetric monotone boolean functions and the area theorem for extrinsic information transfer functions.
We investigate spatially coupled code ensembles. For transmission over the binary erasure channel, it was recently shown that spatial coupling increases the belief propagation threshold of the ensemble to essentially the maximum a-priori threshold of the underlying component ensemble. This explains why convolutional LDPC ensembles, originally introduced by Felstrom and Zigangirov, perform so well over this channel. We show that the equivalent result holds true for transmission over general binary-input memoryless output-symmetric channels. More precisely, given a desired error probability and a gap to capacity, we can construct a spatially coupled ensemble which fulfills these constraints universally on this class of channels under belief propagation decoding. In fact, most codes in that ensemble have that property. The quantifier universal refers to the single ensemble/code which is good for all channels but we assume that the channel is known at the receiver. The key technical result is a proof that under belief propagation decoding spatially coupled ensembles achieve essentially the area threshold of the underlying uncoupled ensemble. We conclude by discussing some interesting open problems.
We show that Reed-Muller codes achieve capacity under maximum a posteriori bit decoding for transmission over the binary erasure channel for all rates $0 < R < 1$. The proof is generic and applies to other codes with sufficient amount of symmetry as well. The main idea is to combine the following observations: (i) monotone functions experience a sharp threshold behavior, (ii) the extrinsic information transfer (EXIT) functions are monotone, (iii) Reed--Muller codes are 2-transitive and thus the EXIT functions associated with their codeword bits are all equal, and (iv) therefore the Area Theorem for the average EXIT functions implies that RM codes threshold is at channel capacity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا