We propose an architecture and methodology for large-scale quantum simulations using hyperfine states of trapped-ions in an arbitrary-layout microtrap array with laserless interactions. An ion is trapped at each site, and the electrode structure provides for the application of single and pairwise evolution operators using only locally created microwave and radio-frequency fields. The avoidance of short-lived atomic levels during evolution effectively eliminates errors due to spontaneous scattering; this may allow scaling of quantum simulators based on trapped ions to much larger systems than currently estimated. Such a configuration may also be particularly appropriate for one-way quantum computing with trapped-ion cluster states.