Do you want to publish a course? Click here

Homology of the curve complex and the Steinberg module of the mapping class group

303   0   0.0 ( 0 )
 Added by Nathan Broaddus
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously known that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex.



rate research

Read More

148 - Andrew Putman 2009
We calculate the first homology group of the mapping class group with coefficients in the first rational homology group of the universal abelian $Z / L Z$-cover of the surface. If the surface has one marked point, then the answer is $Q^{tau(L)}$, where $tau(L)$ is the number of positive divisors of $L$. If the surface instead has one boundary component, then the answer is $Q$. We also perform the same calculation for the level $L$ subgroup of the mapping class group. Set $H_L = H_1(Sigma_g;Z/LZ)$. If the surface has one marked point, then the answer is $Q[H_L]$, the rational group ring of $H_L$. If the surface instead has one boundary component, then the answer is $Q$.
161 - Andrew Putman 2012
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second cohomology group of the level p congruence subgroup of the mapping class group, following my papers The second rational homology group of the moduli space of curves with level structures and The Picard group of the moduli space of curves with level structures.
358 - Andrew Putman 2017
We calculate the abelianizations of the level $L$ subgroup of the genus $g$ mapping class group and the level $L$ congruence subgroup of the $2g times 2g$ symplectic group for $L$ odd and $g geq 3$.
For $ggeq 2$, let $text{Mod}(S_g)$ be the mapping class group of the closed orientable surface $S_g$ of genus $g$. In this paper, we obtain necessary and sufficient conditions under which a given pseudo-periodic mapping can be a root of another up to conjugacy. Using this characterization, the canonical decomposition of (non-periodic) mapping classes, and some known algorithms, we give a theoretical algorithm for computing its roots up to conjugacy. Furthermore, we derive realizable bounds on the degrees of roots of pseudo-periodic mapping classes in $text{Mod}(S_g)$, the Torelli group, the level-$m$ subgroup of $text{Mod}(S_g)$, and the commutator subgroup of $text{Mod}(S_2)$. In particular, we show that the highest possible (realizable) degree of a root of a pseudo-periodic mapping class $F$ is $3q(F)(g+1)(g+2)$, realized by the roots of $T_c^{q(F)}$, where $c$ is a separating curve in $S_g$ of genus $[g/2]$ and $q(F)$ is a unique positive integer associated with the conjugacy class of $F$. Finally, for $ggeq 3$ we show that any pseudo-periodic having a nontrivial periodic component that is not the hyperelliptic involution, normally generates $text{Mod}(S_g)$. Consequently, we establish there always exist roots of bounding pair maps and powers of Dehn twists that normally generate $text{Mod}(S_g)$.
In this paper, we study a series of $L^2$-torsion invariants from the viewpoint of the mapping class group of a surface. We establish some vanishing theorems for them. Moreover we explicitly calculate the first two invariants and compare them with hyperbolic volumes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا