Charge Density Wave Driven Ferromagnetism in the Periodic Anderson Model


Abstract in English

We demonstrate the existence of ferromagnetism in the Periodic Anderson Model (PAM) at conduction-band filling near a quarter. We show that this ferromagnetism is not supported by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions but is instead driven by the precursors of charge density wave (CDW) formation in the conduction electron band. To study the effect of spatial correlations, we compare Dynamical Mean field Approximation (DMFA) and Dynamical Cluster Approximation (DCA) results. We find that both RKKY and CDW driven ferromagnetism persist as short-range correlations are incorporated into the theory. Both DMFA and DCA show the precursors of CDW formation through the strong enhancement of the d-electron CDW susceptibility as the temperature decreases, up to the ferromagnetic transition temperature. In addition, the DCA captures the signal of a band gap opening due to Peierls instability.

Download