This article proposes a novel iterative algorithm based on Low Density Parity Check (LDPC) codes for compression of correlated sources at rates approaching the Slepian-Wolf bound. The setup considered in the article looks at the problem of compressing one source at a rate determined based on the knowledge of the mean source correlation at the encoder, and employing the other correlated source as side information at the decoder which decompresses the first source based on the estimates of the actual correlation. We demonstrate that depending on the extent of the actual source correlation estimated through an iterative paradigm, significant compression can be obtained relative to the case the decoder does not use the implicit knowledge of the existence of correlation.