Eigenvalue estimates for Schroedinger operators on metric trees


Abstract in English

We consider Schroedinger operators on regular metric trees and prove Lieb-Thirring and Cwikel-Lieb-Rozenblum inequalities for their negative eigenvalues. The validity of these inequalities depends on the volume growth of the tree. We show that the bounds are valid in the endpoint case and reflect the correct order in the weak or strong coupling limit.

Download