Do you want to publish a course? Click here

Ly$alpha$ Leaks and Reionization

109   0   0.0 ( 0 )
 Added by Long-Long Feng
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ly$alpha$ absorption spectra of QSOs at redshifts $zsimeq6$ show complete Gunn-Peterson absorption troughs (dark gaps) separated by tiny leaks. The dark gaps are from the intergalactic medium (IGM) where the density of neutral hydrogen are high enough to produce almost saturated absorptions, however, where the transmitted leaks come from is still unclear so far. We demonstrate that leaking can originate from the lowest density voids in the IGM as well as the ionized patches around ionizing sources using semi-analytical simulations. If leaks were produced in lowest density voids, the IGM might already be highly ionized, and the ionizing background should be almost uniform; in contrast, if leaks come from ionized patches, the neutral fraction of IGM would be still high, and the ionizing background is significantly inhomogeneous. Therefore, the origin of leaking is crucial to determining the epoch of inhomogeneous-to-uniform transition of the the ionizing photon background. We show that the origin could be studied with the statistical features of leaks. Actually, Ly$alpha$ leaks can be well defined and described by the equivalent width $W$ and the full width of half area $W_{rm H}$, both of which are less contaminated by instrumental resolution and noise. It is found that the distribution of $W$ and $W_{rm H}$ of Ly$alpha$ leaks are sensitive to the modeling of the ionizing background. We consider four representative reionization models. It is concluded that the leak statistics provides an effective tool to probe the evolutionary history of reionization at $zsimeq5-6.5$. Similar statistics would also be applicable to the reionization of He II at $z simeq 3$(Abridged)



rate research

Read More

130 - S. Baek , A. Ferrara , B. Semelin 2012
We present a novel method to investigate cosmic reionization, using joint spectral information on high redshift Lyman Alpha Emitters (LAE) and quasars (QSOs). Although LAEs have been proposed as reionization probes, their use is hampered by the fact their Ly{alpha} line is damped not only by intergalactic HI but also internally by dust. Our method allows to overcome such degeneracy. First, we carefully calibrate a reionization simulation with QSO absorption line experiments. Then we identify LAEs in two simulation boxes at z=5.7 and z=6.6 and we build synthetic images/spectra of a prototypical LAE. At redshift 5.7, we find that the Ly{alpha} transmissivity (T_LAE) ~ 0.25, almost independent of the halo mass. This constancy arises from the conspiracy of two effects: (i) the intrinsic Ly{alpha} line width and (ii) the infall peculiar velocity. At higher redshift, z=6.6, where the transmissivity is instead largely set by the local HI abundance and LAE transmissivity consequently increases with halo mass from 0.15 to 0.3. Although outflows are present, they are efficiently pressure-confined by infall in a small region around the LAE; hence they only marginally affect transmissivity. Finally, we cast LOS originating from background QSOs passing through foreground LAEs at different impact parameters, and compute the quasar transmissivity (T_QSO). At smaller impact parameters, d < 1 cMpc, a positive correlation between T_QSO and halo mass is found at z = 5.7, which tends to become less pronounced (i.e. flatter) at larger distances. By cross-correlating T_LAE and T_QSO, we can obtain a HI density estimate unaffected by dust. At z= 5.7, the cross-correlation is relatively weak,whereas at z = 6.6 we find a clear positive correlation. We conclude by briefly discussing the perspectives for the application of the method to existing and forthcoming data.
The transmission of Lyman-{alpha} (Ly{alpha}) in the spectra of distant quasars depends on the density, temperature, and ionization state of the intergalactic medium (IGM). Therefore, high-redshift (z > 5) Ly{alpha} forests could be invaluable in studying the late stages of the epoch of reionization (EoR), as well as properties of the sources that drive it. Indeed, high-quality quasar spectra have now firmly established the existence of large-scale opacity fluctuations at z > 5, whose physical origins are still debated. Here we introduce a Bayesian framework capable of constraining the EoR and galaxy properties by forward-modelling the high-z Ly{alpha} forest. Using priors from galaxy and CMB observations, we demonstrate that the final overlap stages of the EoR (when >95% of the volume was ionized) should occur at z < 5.6, in order to reproduce the large-scale opacity fluctuations seen in forest spectra. However, it is the combination of patchy reionization and the inhomogeneous UV background that produces the longest Gunn-Peterson troughs. Ly{alpha} forest observations tighten existing constraints on the characteristic ionizing escape fraction of galaxies, with the combined observations suggesting f_{rm esc} approx 7^4_3%, and disfavoring a strong evolution with the galaxys halo (or stellar) mass.
We present a new measurement of the Ly$alpha$ luminosity function at redshift $z=6.9$, finding moderate evolution from $z=5.7$ that is consistent with a fully or largely ionized $zsim7$ intergalactic medium. Our result is based on four fields of the LAGER (Lyman Alpha Galaxies in the Epoch of Reionization) project. Our survey volume of $6.1times10^{6}$ Mpc$^{3}$ is double that of the next largest $zsim 7$ survey. We combine two new LAGER fields (WIDE12 and GAMA15A) with two previously reported LAGER fields (COSMOS and CDFS). In the new fields, we identify $N=95$ new $z=6.9$ Ly$alpha$ emitters (LAEs); characterize our surveys completeness and reliability; and compute Ly$alpha$ luminosity functions. The best-fit Schechter luminosity function parameters for all four LAGER fields are in good general agreement. Two fields (COSMOS and WIDE12) show evidence for a bright-end excess above the Schechter function fit. We find that the Ly$alpha$ luminosity density declines at the same rate as the UV continuum LF from $z=5.7$ to $z=6.9$. This is consistent with an intergalactic medium that was fully ionized as early as redshift $zsim 7$, or with a volume-averaged neutral hydrogen fraction of $x_{HI} < 0.33$ at $1sigma$.
We carried out extended spectroscopic confirmations of Ly-alpha emitters (LAEs) at z=6.5 and 5.7 in the Subaru Deep Field. Now, the total number of spectroscopically confirmed LAEs is 45 and 54 at z=6.5 and 5.7, respectively, and at least 81% (70%) of our photometric candidates at z=6.5 (5.7) have been spectroscopically identified as real LAEs. We made careful measurements of the Ly-alpha luminosity, both photometrically and spectroscopically, to accurately determine the Ly-alpha and rest-UV luminosity functions (LFs). The substantially improved evaluation of the Ly-alpha LF at z=6.5 shows an apparent deficit from z=5.7 at least at the bright end, and a possible decline even at the faint end, though small uncertainties remain. The rest-UV LFs at z=6.5 and 5.7 are in good agreement, at least at the bright end, in clear contrast to the differences seen in the Ly-alpha LF. These results imply an increase in the neutral fraction of the intergalactic medium from z=5.7 to 6.5. The rest-frame equivalent width (EW_0) distribution at z=6.5 seems to be systematically smaller than z=5.7, and it shows an extended tail toward larger EW_0. The bright end of the rest-UV LF can be reproduced from the observed Ly-alpha LF and a reasonable EW_0-UV luminosity relation. Integrating this rest-UV LF provides the first measurement of the contribution of LAEs to the photon budget required for reionization. The derived UV LF suggests that the fractional contribution of LAEs to the photon budget among Lyman break galaxies significantly increases towards faint magnitudes. Low-luminosity LAEs could dominate the ionizing photon budget, though this inference depends strongly on the uncertain faint-end slope of the Ly-alpha LF.
We study the prospects for constraining the ionized fraction of the intergalactic medium (IGM) at $z>6$ with the next generation of large Ly$alpha$ emitter surveys. We make predictions for the upcoming Subaru Hyper Suprime-Cam (HSC) Ly$alpha$ survey and a hypothetical spectroscopic survey performed with the James Webb Space Telescope (JWST). Considering various scenarios where the observed evolution of the Ly$alpha$ luminosity function of Ly$alpha$ emitters at $z>6$ is explained partly by an increasingly neutral IGM and partly by intrinsic galaxy evolution, we show how clustering measurements will be able to distinguish between these scenarios. We find that the HSC survey should be able to detect the additional clustering induced by a neutral IGM if the global IGM neutral fraction is greater than $sim$20 per cent at $z=6.5$. If measurements of the Ly$alpha$ equivalent widths (EWs) are also available, neutral fractions as small as 10 per cent may be detectable by looking for correlation between the EW and the local number density of objects. In this case, if it should turn out that the IGM is significantly neutral at $z=6.5$ and the intrinsic EW distribution is relatively narrow, the observed EWs can also be used to construct a map of the locations and approximate sizes of the largest ionized regions. For the JWST survey, the results appear a bit less optimistic. Since such surveys probe a large range of redshifts, the effects of the IGM will be mixed up with any intrinsic galaxy evolution that is present, making it difficult to disentangle the effects. However, we show that a survey with the JWST will have a possibility of observing a large group of galaxies at $zsim7$, which would be a strong indication of a partially neutral IGM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا