Do you want to publish a course? Click here

Connection Between System Parameters and Localization Probability in Network of Randomly Distributed Nodes

91   0   0.0 ( 0 )
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

This article deals with localization probability in a network of randomly distributed communication nodes contained in a bounded domain. A fraction of the nodes denoted as L-nodes are assumed to have localization information while the rest of the nodes denoted as NL nodes do not. The basic model assumes each node has a certain radio coverage within which it can make relative distance measurements. We model both the case radio coverage is fixed and the case radio coverage is determined by signal strength measurements in a Log-Normal Shadowing environment. We apply the probabilistic method to determine the probability of NL-node localization as a function of the coverage area to domain area ratio and the density of L-nodes. We establish analytical expressions for this probability and the transition thresholds with respect to key parameters whereby marked change in the probability behavior is observed. The theoretical results presented in the article are supported by simulations.



rate research

Read More

For many power-limited networks, such as wireless sensor networks and mobile ad hoc networks, maximizing the network lifetime is the first concern in the related designing and maintaining activities. We study the network lifetime from the perspective of network science. In our dynamic network, nodes are assigned a fixed amount of energy initially and consume the energy in the delivery of packets. We divided the network traffic flow into four states: no, slow, fast, and absolute congestion states. We derive the network lifetime by considering the state of the traffic flow. We find that the network lifetime is generally opposite to traffic congestion in that the more congested traffic, the less network lifetime. We also find the impacts of factors such as packet generation rate, communication radius, node moving speed, etc., on network lifetime and traffic congestion.
119 - Usman A. Khan , Soummya Kar , 2008
The paper develops DILOC, a emph{distributive}, emph{iterative} algorithm that locates M sensors in $mathbb{R}^m, mgeq 1$, with respect to a minimal number of m+1 anchors with known locations. The sensors exchange data with their neighbors only; no centralized data processing or communication occurs, nor is there centralized knowledge about the sensors locations. DILOC uses the barycentric coordinates of a sensor with respect to its neighbors that are computed using the Cayley-Menger determinants. These are the determinants of matrices of inter-sensor distances. We show convergence of DILOC by associating with it an absorbing Markov chain whose absorbing states are the anchors. We introduce a stochastic approximation version extending DILOC to random environments when the knowledge about the intercommunications among sensors and the inter-sensor distances are noisy, and the communication links among neighbors fail at random times. We show a.s. convergence of the modified DILOC and characterize the error between the final estimates and the true values of the sensors locations. Numerical studies illustrate DILOC under a variety of deterministic and random operating conditions.
In this paper, a novel framework is proposed for channel charting (CC)-aided localization in millimeter wave networks. In particular, a convolutional autoencoder model is proposed to estimate the three-dimensional location of wireless user equipment (UE), based on multipath channel state information (CSI), received by different base stations. In order to learn the radio-geometry map and capture the relative position of each UE, an autoencoder-based channel chart is constructed in an unsupervised manner, such that neighboring UEs in the physical space will remain close in the channel chart. Next, the channel charting model is extended to a semi-supervised framework, where the autoencoder is divided into two components: an encoder and a decoder, and each component is optimized individually, using the labeled CSI dataset with associated location information, to further improve positioning accuracy. Simulation results show that the proposed CC-aided semi-supervised localization yields a higher accuracy, compared with existing supervised positioning and conventional unsupervised CC approaches.
We introduce the concept of spread of a code, and we specialize it to the case of maximum weight spectrum (MWS) codes. We classify two newly-defined sub-families of MWS codes according to their weight distributions, and completely describe their fundamental parameters. We focus on one of these families, the strictly compact MWS codes, proving their optimality as MWS codes and linking them to known codes.
Heterogeneous Ultra-Dense Network (HUDN) is one of the vital networking architectures due to its ability to enable higher connectivity density and ultra-high data rates. Rational user association and power control schedule in HUDN can reduce wireless interference. This paper proposes a novel idea for resolving the joint user association and power control problem: the optimal user association and Base Station transmit power can be represented by channel information. Then, we solve this problem by formulating an optimal representation function. We model the HUDNs as a heterogeneous graph and train a Graph Neural Network (GNN) to approach this representation function by using semi-supervised learning, in which the loss function is composed of the unsupervised part that helps the GNN approach the optimal representation function and the supervised part that utilizes the previous experience to reduce useless exploration. We separate the learning process into two parts, the generalization-representation learning (GRL) part and the specialization-representation learning (SRL) part, which train the GNN for learning representation for generalized scenario quasi-static user distribution scenario, respectively. Simulation results demonstrate that the proposed GRL-based solution has higher computational efficiency than the traditional optimization algorithm, and the performance of SRL outperforms the GRL.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا