We present the first results for the Kl3 form factor from simulations with 2+1 flavours of dynamical domain wall quarks. Combining our result, namely f_+(0)=0.964(5), with the latest experimental results for Kl3 decays leads to |V_{us}|=0.2249(14), reducing the uncertaintity in this important parameter. For the O(p^6) term in the chiral expansion we obtain Delta f=-0.013(5).
We present the first result for the hyperon vector form factor f_1 for Xi^0 -> Sigma^+ l bar{nu} and Sigma^- -> n l bar{nu} semileptonic decays from fully dynamical lattice QCD. The calculations are carried out with gauge configurations generated by the RBC and UKQCD collaborations with (2+1)-flavors of dynamical domain-wall fermions and the Iwasaki gauge action at beta=2.13, corresponding to a cutoff 1/a=1.73 GeV. Our results, which are calculated at the lighter three sea quark masses (the lightest pion mass down to approximately 330 MeV), show that a sign of the second-order correction of SU(3) breaking on the hyperon vector coupling f_1(0) is negative. The tendency of the SU(3) breaking correction observed in this work disagrees with predictions of both the latest baryon chiral perturbation theory result and large N_c analysis.
We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K->pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation.
Lattice calculations of the form factors for the charm semileptonic decays D to K l nu and D to pi l nu provide inputs to direct determinations of the CKM matrix elements |V(cs)| and |V(cd)| and can be designed to validate calculations of the form factors for the bottom semileptonic decays B to pi l nu and B to K l l-bar. We are using Fermilab charm (bottom) quarks and asqtad staggered light quarks on the 2+1 flavor asqtad MILC ensembles to calculate the charm (bottom) form factors. We outline improvements to the previous calculation of the charm form factors and detail our progress. We expect our current round of data production to allow us to reduce the theoretical uncertainties in |V(cs)| and |V(cd)| from 10.5% and 11%, respectively, to about 7%.
We present a new study of the form factors for D -> K semileptonic decay from lattice QCD that allows us to compare the shape of the vector form factor to experiment and, for the first time, to extract V_cs using results from all experimental q^2 bins. The valence quarks are implemented with the Highly Improved Staggered Quark action on MILC configurations that include u, d and s sea quarks. The scalar and vector currents are nonperturbatively normalised and, using phased boundary conditions, we are able to cover the full q^2 range accessible to experiment. Our result is V_cs = 0.963(5)_{expt}(14)_{lattice}. We also demonstrate that the form factors are insensitive to whether the spectator quark is u/d or s, which has implications for other decay channels.
The semileptonic process, B --> pi l u, is studied via full QCD Lattice simulations. We use unquenched gauge configurations generated by the MILC collaboration. These include the effect of vacuum polarization from three quark flavors: the $s$ quark and two very light flavors ($u/d$) of variable mass allowing extrapolations to the physical chiral limit. We employ Nonrelativistic QCD to simulate the $b$ quark and a highly improved staggered quark action for the light sea and valence quarks. We calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 GeV$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |v_{ub}|^2 = 1.46(35) ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averaging Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 4.22(30)(51) times 10^{-3}$. PLEASE NOTE APPENDIX B with an ERRATUM, to appear in Physical Review D, to the published version of this e-print (Phys.Rev.D 73, 074502 (2006)). Results for the form factor $f_+(q^2)$ in the chiral limit have changed significantly. The last two sentences in this abstract should now read; We calculate the form factor $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 Gev$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |V_{ub}|^2 = 2.07(57)ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averagibg Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 3.55(25)(50) times 10^{-3}$.