We have explored the galaxy disk/extended halo gas kinematic relationship using rotation curves (Keck/ESI) of ten intermediate redshift galaxies which were selected by MgII halo gas absorption observed in quasar spectra. Previous results of six edge-on galaxies, probed along their major axis, suggest that observed halo gas velocities are consistent with extended disk-like halo rotation at galactocentric distances of 25-72 kpc. Using our new sample, we demonstrate that the gas velocities are by and large not consistent with being directly coupled to the galaxy kinematics. Thus, mechanisms other than co-rotation dynamics (i.e., gas inflow, feedback, galaxy-galaxy interactions, etc.) must be invoked to account for the overall observed kinematics of the halo gas. In order to better understand the dynamic interaction of the galaxy/halo/cosmic web environment, we performed similar mock observations of galaxies and gaseous halos in Lambda-CDM cosmological simulations. We discuss an example case of a z=0.92 galaxy with various orientations probing halo gas at a range of positions. The gas dynamics inferred using simulated quasar absorption lines are consistent with observational data.