Do you want to publish a course? Click here

SUSY QCD Corrections to Higgs Pair Production from Bottom Quark Fusion

177   0   0.0 ( 0 )
 Added by Yili Wang
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We present a complete next-to-leading order (NLO) calculation for the total cross section for inclusive Higgs pair production via bottom-quark fusion at the CERN Large Hadron Collider (LHC) in the minimal supersymmetric standard model (MSSM) and the minimal supergravity model (mSUGRA). We emphasize the contributions of squark and gluino loops (SQCD) and the decoupling properties of our results for heavy squark and gluino masses. The enhanced couplings of the b quark to the Higgs bosons in supersymmetric models with large tanb yield large NLO SQCD corrections in some regions of parameter space.



rate research

Read More

We present a complete next-to-leading order (NLO) calculation for the total cross section of inclusive Higgs pair production via bottom-quark fusion ($bbar{b} to hh$) at the CERN Large Hadron Collider (LHC) in the Standard Model. The NLO QCD corrections lead to less dependence on the renormalization scale ($mu_R$) and the factorization scale ($mu_F$) than the leading-order (LO) cross section, and they significantly increase the LO cross section. The rate for inclusive Higgs pair production is small in the Standard Model, but can be large in models with enhanced couplings of the $b$ quark to the Higgs bosons.
168 - Terrance Figy 2008
We present the NLO QCD corrections for light Higgs pair production via vector boson fusion at the LHC within the CP conserving type II two higgs doublet model in the form of a fully flexible parton--level Monte Carlo program. Scale dependences on integrated cross sections and distributions are reduced with QCD K-factors of order unity.
Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.
The total cross section for Higgs production in bottom-quark annihilation is evaluated at next-to-next-to-leading order (NNLO) in QCD. This is the first time that all terms at order alpha_s^2 are taken into account. We find a greatly reduced scale dependence with respect to lower order results, for both the factorization and the renormalization scales. The behavior of the result is consistent with earlier determinations of the appropriate factorization scale for this process of mu_F ~ M_H/4, and supports the validity of the bottom parton density approach for computing the total inclusive rate. We present precise predictions for the cross section at the Tevatron and the LHC.
We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs and the leading jets. The results are obtained with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا