Do you want to publish a course? Click here

A precessing jet model for the PN K 3-35: simulated radio-continuum emission

178   0   0.0 ( 0 )
 Added by Yolanda Gomez Dr.
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bipolar morphology of the planetary nebula (PN) K 3-35 observed in radio-continuum images was modelled with 3D hydrodynamic simulations with the adaptive grid code yguazu-a. We find that the observed morphology of this PN can be reproduced considering a precessing jet evolving in a dense AGB circumstellar medium, given by a mass loss rate dot{M}_{csm}=5x10^{-5}M_{odot}/yr and a terminal velocity v_{w}=10 km/s. Synthetic thermal radio-continuum maps were generated from numerical results for several frequencies. Comparing the maps and the total fluxes obtained from the simulations with the observational results, we find that a model of precessing dense jets, where each jet injects material into the surrounding CSM at a rate dot{M}_j=2.8x10^{-4} {M_{odot}/yr (equivalent to a density of 8x10^{4} {cm}^{-3}, a velocity of 1500 km/s, a precession period of 100 yr, and a semi-aperture precession angle of 20 degrees agrees well with the observations.



rate research

Read More

124 - D. Tafoya , Y. Gomez , G. Anglada 2006
We report the detection, for the first time, of HCO+ (J=1-0) emission as well as marginal CO (J=1-0) emission toward the planetary nebula (PN) K3-35 as a result of a molecular survey carried out toward this source. We also report new observations of the previously detected CO (J=2-1) and water maser emission, as well as upper limits for the emission of the SiO, H13CO+, HNC, HCN, HC3OH, HC5N, CS, HC3N, 13CO, CN, and NH3 molecules. From the ratio of CO (J=2-1) to CO (J=1-0) emission we have estimated the kinetic temperature of the molecular gas, obtaining a value of ~20 K. Using this result, we have estimated a molecular mass for the envelope of ~ 0.017 M_Sun, and an HCO+ abundance relative to H_2 of 6 X 10^-7, similar to the abundances found in other PNe. K~3-35 is remarkable because it is one of the two PNe reported to exhibit water maser emission, which is present in the central region as well as at a distance of $simeq$ 5000 AU away from the center. The presence of molecular emission provides some clues that could help to understand the persistence of water molecules in the envelope of K 3-35. The HCO$^{+}$ emission could be arising in dense molecular clumps, that may provide the shielding mechanism which protects water molecules in this source.
52 - M. Massi 2003
Here we discuss two consecutive MERLIN observations of the X-ray binary LS I +61 303. The first observation shows a double-sided jet extending up to about 200 AU on both sides of a central source. The jet shows a bent S-shaped structure similar to the one displayed by the well-known precessing jet of SS 433. The precession suggested in the first MERLIN image becomes evident in the second one, showing a one-sided bent jet significantly rotated with respect to the jet of the day before. We conclude that the derived precession of the relativistic (beta=0.6) jet explains puzzling previous VLBI results. Moreover, the fact that the precession is fast could be the explanation of the never understood short term (days) variability of the associated gamma-ray source 2CG 135+01 / 3EG J0241+6103.
293 - Seppo Laine , Rainer Beck 2007
The barred galaxy NGC 7479 hosts a remarkable jet-like radio continuum feature: bright, 12-kpc long in projection, and hosting an aligned magnetic field. The degree of polarization is 6%-8% along the jet, and remarkably constant, which is consistent with helical field models. The radio brightness of the jet suggests strong interaction with the ISM and hence a location near the disk plane. We observed NGC 7479 at four wavelengths with the VLA and Effelsberg radio telescopes. The equipartition strength is 35-40 micro-G for the total and >10 micro-G for the ordered magnetic field in the jet. The jet acts as a bright, polarized background. Faraday rotation between 3.5 and 6 cm and depolarization between 6 and 22 cm can be explained by magneto-ionic gas in front of the jet, with thermal electron densities of ~0.06 cm**(-3) in the bar and ~0.03 cm**(-3) outside the bar. The regular magnetic field along the bar points toward the nucleus on both sides. The regular field in the disk reveals multiple reversals, probably consisting of field loops stretched by a shearing gas flow in the bar. The projection of the jet bending in the sky plane is in the sense opposite to that of the underlying stellar and gaseous spiral structure. The bending in 3-D is most easily explained as a precessing jet, with an age less than 10**6 years. Our observations are consistent with very recent triggering, possibly by a minor merger. NGC 7479 provides a unique opportunity to study interaction-triggered 15-kpc scale radio jets within a spiral galaxy.
214 - Y. Gomez , D. Tafoya , G. Anglada 2009
K 3-35 is a planetary nebula (PN) where H2O maser emission has been detected, suggesting that it departed from the proto-PNe phase only some decades ago. Interferometric VLA observations of the OH 18 cm transitions in K~3-35 are presented.OH maser emission is detected in all four ground state lines (1612, 1665, 1667, and 1720 MHz). All the masers appear blueshifted with respect to the systemic velocity of the nebula and they have different spatial and kinematic distributions.The OH 1665 and 1720 MHz masers appear spatially coincident with the core of the nebula, while the OH 1612 and 1667 MHz ones exhibit a more extended distribution. We suggest that the 1665 and 1720 masers arise from a region close to the central star, possibly in a torus, while the 1612 and 1667 lines originate mainly from the extended northern lobe of the outflow. It is worth noting that the location and velocity of the OH 1720 MHz maser emission are very similar to those of the H2O masers (coinciding within 0.1 and ~2 km/s, respectively). We suggest that the pumping mechanism in the H2O masers could be produced by the same shock that is exciting the OH 1720 MHz transition. A high degree of circular polarization (>50%) was found to be present in some features of the 1612, 1665, and 1720 MHz emission.For the 1665 MHz transition at ~ +18 km/s the emission with left and right circular polarizations (LCP and RCP) coincide spatially within a region of ~0.03 in diameter.Assuming that these RCP and LCP 1665 features come from a Zeeman pair, we estimate a magnetic field of ~0.9 mG within 150 AU from the 1.3 cm continuum peak. This value is in agreement with a solar-type magnetic field associated with evolved stars.
51 - E. Berger , R. Sari , D. A. Frail 2000
We present broad-band radio observations of the afterglow of GRB000301C, spanning from 1.4 to 350 GHz for the period of 3 to 83 days after the burst. This radio data, in addition to measurements at the optical bands, suggest that the afterglow arises from a collimated outflow, i.e. a jet. To test this hypothesis in a self-consistent manner, we employ a global fit and find that a model of a jet, expanding into a constant density medium (ISM+jet), provides the best fit to the data. A model of the burst occurring in a wind-shaped circumburst medium (wind-only model) can be ruled out, and a wind+jet model provides a much poorer fit of the optical/IR data than the ISM+jet model. In addition, we present the first clear indication that the reported fluctuations in the optical/IR are achromatic with similar amplitudes in all bands, and possibly extend into the radio regime. Using the parameters derived from the global fit, in particular a jet break time, t_{jet}=7.5 days, we infer a jet opening angle of theta=0.2, and consequently the estimate of the emitted energy in the GRB itself is reduced by a factor of 50 relative to the isotropic value, giving E=1.1 times 10^{51} ergs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا