No Arabic abstract
We investigate whether the globular clusters (GCs) in the recently published sample of GCs in the Fornax cluster by Bergond and coworkers are indeed intra-cluster objects. We combine the catalogue of radial velocity measurements by Bergond et al. with our CTIO MOSAIC photometry in the Washington system and analyse the relation of metal-poor and metal-rich GCs with their host galaxies. The metal-rich GCs appear to be kinematically associated with their respective host galaxies. The vast majority of the metal-poor GCs found in between the galaxies of the Fornax cluster have velocities which are consistent with them being members of the very extended NGC 1399 GC system. We find that when the sample is restricted to the most accurate velocity measurements, the GC velocity dispersion profile can be described with a mass model derived for the NGC 1399 GC system within 80 kpc. We identify one ``vagrant GC whose radial velocity suggests that it is not bound to any galaxy unless its orbit has a very large apogalactic distance.
We performed spectroscopy of globular clusters associated with NGC 1399 and measured radial velocities of more than 400 clusters, the largest sample ever obtained for dynamical studies. In this progress report, we present the sample and the first preliminary results. Red and blue clusters have slightly different velocity dispersions in accordance with their different density profiles. Their velocity dispersions remain constant with radial distance, which differs from earlier work.
Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift $(zsim 1)$ two sets of particles from individual galactic halos constrained by the fact that, at redshift $z=0$, they have density profiles similar to observed ones. At redshift $z=0$, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. Since the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift $z=0$ up to 83% for redshift $zsim 2$. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.
We investigate the kinematics of a combined sample of 74 globular clusters around NGC 1399. Their high velocity dispersion, increasing with radius, supports their association with the gravitational potential of the galaxy cluster rather than with that of NGC 1399 itself. We find no evidence for rotation in the full sample, although some indication for rotation in the outer regions. The data do not allow us to detect differences between the kinematics of the blue and red sub-populations of globular clusters. A comparison between the globular cluster systems of NGC 1399 and those of NGC 1404 and NGC 1380 indicates that the globular clusters in all three galaxies are likely to have formed via similar mechanisms and at similar epochs. The only property which distinguishes the NGC 1399 globular cluster system from these others is that it is ten times more abundant. We summarize the evidence for associating these excess globulars with the galaxy cluster rather than with NGC 1399 itself, and suggest that the over-abundance can be explained by tidal stripping, at an early epoch, of neighboring galaxies and subsequent accumulation of globulars in the gravitational potential of the galaxy cluster.
We present 8 bright globular clusters and/or objects of less familiar nature which we found in the course of scrutinizing the globular cluster system of NGC 1399. These objects are morphologically striking, either by their sizes or by other structural properties. Some of them may be candidates for stripped dwarf galaxy nuclei, emphasizing the possible role of accretion in the NGC 1399 cluster system. They are all highly interesting targets for further deep spectroscopy or HST-imaging. Since these objects have been found within an area of only 42 arcmin**2, we expect many more still to be detected in a full census of the NGC 1399 cluster system.
We have obtained spectroscopic redshifts of colour-selected point sources in four wide area VLT-FLAMES fields around the Fornax Cluster giant elliptical galaxy NGC 1399, identifying as cluster members 30 previously unknown faint (-10.5<M_g<-8.8) compact stellar systems (CSS), and improving redshift accuracy for 23 previously catalogued CSS. By amalgamating our results with CSS from previous 2dF observations and excluding CSS dynamically associated with prominent (non-dwarf) galaxies surrounding NGC 1399, we have isolated 80 `unbound systems that are either part of NGC 1399s globular cluster (GC) system or intracluster GCs. For these unbound systems, we find (i) they are mostly located off the main stellar locus in colour-colour space; (ii) their projected distribution about NGC 1399 is anisotropic, following the Fornax Cluster galaxy distribution, and there is weak evidence for group rotation about NGC 1399; (iii) their completeness-adjusted radial surface density profile has a slope similar to that of NGC 1399s inner GC system; (iv) their mean heliocentric recessional velocity is between that of NGC 1399s inner GCs and that of the surrounding dwarf galaxies, but their velocity dispersion is significantly lower; (v) bright CSS (M_V<-11) are slightly redder than the fainter systems, suggesting they have higher metallicity; (vi) CSS show no significant trend in $g - i$ colour index with radial distance from NGC 1399.