Do you want to publish a course? Click here

Generation of Magnetic Field by Combined Action of Turbulence and Shear

381   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English
 Authors T. A. Yousef




Ask ChatGPT about the research

The feasibility of a mean-field dynamo in nonhelical turbulence with superimposed linear shear is studied numerically in elongated shearing boxes. Exponential growth of magnetic field at scales much larger than the outer scale of the turbulence is found. The charateristic scale of the field is l_B ~ S^{-1/2} and growth rate is gamma ~ S, where S is the shearing rate. This newly discovered shear dynamo effect potentially represents a very generic mechanism for generating large-scale magnetic fields in a broad class of astrophysical systems with spatially coherent mean flows.



rate research

Read More

The rich structure that we observe in molecular clouds is due to the interplay between strong magnetic fields and supersonic (turbulent) velocity fluctuations. The velocity fluctuations interact with the magnetic field, causing it too to fluctuate. Using numerical simulations, we explore the nature of such magnetic field fluctuations, $vec{delta B}$, over a wide range of turbulent Mach numbers, $mathcal{M} = 2 - 20$ (i.e., from weak to strong compressibility), and Alfven Mach numbers, $mathcal{M}_{text{A}0} = 0.1 - 100$ (i.e., from strong to weak magnetic mean fields, $B_0$). We derive a compressible quasi-static fluctuation model from the magnetohydrodynamical (MHD) equations and show that velocity gradients parallel to the mean magnetic field give rise to compressible modes in sub-Alfvenic flows, which prevents the flow from becoming two-dimensional, as is the case in incompressible MHD turbulence. We then generalise an analytical model for the magnitude of the magnetic fluctuations to include $mathcal{M}$, and find $|vec{delta B}| = delta B = c_ssqrt{pirho_0}mathcal{M}mathcal{M}_{text{A}0}$, where $c_s$ is the sound speed and $rho_0$ is the mean density of gas. This new relation fits well in the strong $B$-field regime. We go on to study the anisotropy between the perpendicular ($ B_{perp}$) and parallel ($ B_{parallel}$) fluctuations and the mean-normalised fluctuations, which we find follow universal scaling relations, invariant of $mathcal{M}$. We provide a detailed analysis of the morphology for the $delta B_{perp}$ and $delta B_{parallel}$ probability density functions and find that eddies aligned with $B_0$ cause parallel fluctuations that reduce $B_{parallel}$ in the most anisotropic simulations. We discuss broadly the implications of our fluctuation models for magnetised gases in the interstellar medium.
We study freely decaying quantum turbulence by performing high resolution numerical simulations of the Gross-Pitaevskii equation (GPE) in the Taylor-Green geometry. We use resolutions ranging from $1024^3$ to $4096^3$ grid points. The energy spectrum confirms the presence of both a Kolmogorov scaling range for scales larger than the intervortex scale $ell$, and a second inertial range for scales smaller than $ell$. Vortex line visualizations show the existence of substructures formed by a myriad of small-scale knotted vortices. Next, we study finite temperature effects in the decay of quantum turbulence by using the stochastic Ginzburg-Landau equation to generate thermal states, and then by evolving a combination of these thermal states with the Taylor-Green initial conditions using the GPE. We extract the mean free path out of these simulations by measuring the spectral broadening in the Bogoliubov dispersion relation obtained from spatio-temporal spectra, and use it to quantify the effective viscosity as a function of the temperature. Finally, in order to compare the decay of high temperature quantum and that of classical flows, and to further calibrate the estimations of viscosity from the mean free path in the GPE simulations, we perform low Reynolds number simulations of the Navier-Stokes equations.
A linearly unstable, sinusoidal $E times B$ shear flow is examined in the gyrokinetic framework in both the linear and nonlinear regimes. In the linear regime, it is shown that the eigenmode spectrum is nearly identical to hydrodynamic shear flows, with a conjugate stable mode found at every unstable wavenumber. In the nonlinear regime, turbulent saturation of the instability is examined with and without the inclusion of a driving term that prevents nonlinear flattening of the mean flow, and a scale-independent radiative damping term that suppresses the excitation of conjugate stable modes. A simple fluid model for how momentum transport and partial flattening of the mean flow scale with the driving term is constructed, from which it is shown that, except at high radiative damping, stable modes play an important role in the turbulent state and yield significantly improved quantitative predictions when compared with corresponding models neglecting stable modes.
We study generation of magnetic fields involving large spatial scales by time- and space-periodic small-scale parity-invariant flows. The anisotropic magnetic eddy diffusivity tensor is calculated by the standard procedure involving expansion of magnetic modes and their growth rates in power series in the scale ratio. Our simulations, conducted for flows with random harmonic composition and exponentially decaying energy spectra, demonstrate that enlargement of the spatial scale of magnetic field is beneficial for generation by time-periodic flows. However, they turn out, in general, to be less efficient dynamos, than steady flows.
The theory of turbulent transport of parallel ion momentum and heat by the interaction of stochastic magnetic fields and turbulence is presented. Attention is focused on determining the kinetic stress and the compressive energy flux. A critical parameter is identified as the ratio of the turbulent scattering rate to the rate of parallel acoustic dispersion. For the parameter large, the kinetic stress takes the form of a viscous stress. For the parameter small, the quasilinear residual stress is recovered. In practice, the viscous stress is the relevant form, and the quasilinear limit is not observable. This is the principal prediction of this paper. A simple physical picture is developed and shown to recover the results of the detailed analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا