Spectral weight transfer in a disorder-broadened Landau level


Abstract in English

In the absence of disorder, the degeneracy of a Landau level (LL) is $N=BA/phi_0$, where $B$ is the magnetic field, $A$ is the area of the sample and $phi_0=h/e$ is the magnetic flux quantum. With disorder, localized states appear at the top and bottom of the broadened LL, while states in the center of the LL (the critical region) remain delocalized. This well-known phenomenology is sufficient to explain most aspects of the Integer Quantum Hall Effect (IQHE) [1]. One unnoticed issue is where the new states appear as the magnetic field is increased. Here we demonstrate that they appear predominantly inside the critical region. This leads to a certain ``spectral ordering of the localized states that explains the stripes observed in measurements of the local inverse compressibility [2-3], of two-terminal conductance [4], and of Hall and longitudinal resistances [5] without invoking interactions as done in previous work [6-8].

Download