Do you want to publish a course? Click here

On NIP and invariant measures

211   0   0.0 ( 0 )
 Added by Ehud Hrushovski
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study forking, Lascar strong types, Keisler measures and definable groups, under an assumption of $NIP$ (not the independence property), continuing aspects of math.LO/0607442. Among key results are: (i) if $p = tp(b/A)$ does not fork over $A$ then the Lascar strong type of $b$ over $A$ coincides with the compact strong type of $b$ over $A$ and any global nonforking extension of $p$ is Borel definable over $bdd(A)$ (ii) analogous statements for Keisler measures and definable groups, including the fact that $G^{000} = G^{00}$ for $G$ definably amenable, (iii) definitions, characterizations and properties of generically stable types and groups (iv) uniqueness of translation invariant Keisler measures on groups with finitely satisfiable generics (vi) A proof of the compact domination conjecture for definably compact commutative groups in $o$-minimal expansions of real closed fields.



rate research

Read More

We give examples of (i) a simple theory with a formula (with parameters) which does not fork over the empty set but has mu measure 0 for every automorphism invariant Keisler measure mu, and (ii) a definable group G in a simple theory such that G is not definably amenable, i.e. there is no translation invariant Keisler measure on G We also discuss paradoxical decompositions both in the setting of discrete groups and of definable groups, and prove some positive results about small theories, including the definable amenability of definable groups, and nontriviality of the graded Grothendieck ring.
We study the randomness properties of reals with respect to arbitrary probability measures on Cantor space. We show that every non-computable real is non-trivially random with respect to some measure. The probability measures constructed in the proof may have atoms. If one rules out the existence of atoms, i.e. considers only continuous measures, it turns out that every non-hyperarithmetical real is random for a continuous measure. On the other hand, examples of reals not random for any continuous measure can be found throughout the hyperarithmetical Turing degrees.
We study the question, ``For which reals $x$ does there exist a measure $mu$ such that $x$ is random relative to $mu$? We show that for every nonrecursive $x$, there is a measure which makes $x$ random without concentrating on $x$. We give several conditions on $x$ equivalent to there being continuous measure which makes $x$ random. We show that for all but countably many reals $x$ these conditions apply, so there is a continuous measure which makes $x$ random. There is a meta-mathematical aspect of this investigation. As one requires higher arithmetic levels in the degree of randomness, one must make use of more iterates of the power set of the continuum to show that for all but countably many $x$s there is a continuous $mu$ which makes $x$ random to that degree.
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom -- the symplectic eigenvalues -- which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
347 - Jan Reimann 2008
We show that if a real $x$ is strongly Hausdorff $h$-random, where $h$ is a dimension function corresponding to a convex order, then it is also random for a continuous probability measure $mu$ such that the $mu$-measure of the basic open cylinders shrinks according to $h$. The proof uses a new method to construct measures, based on effective (partial) continuous transformations and a basis theorem for $Pi^0_1$-classes applied to closed sets of probability measures. We use the main result to give a new proof of Frostmans Lemma, to derive a collapse of randomness notions for Hausdorff measures, and to provide a characterization of effective Hausdorff dimension similar to Frostmans Theorem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا