Do you want to publish a course? Click here

AEGIS: New Evidence Linking Active Galactic Nuclei to the Quenching of Star Formation

512   0   0.0 ( 0 )
 Added by Kevin Bundy
 Publication date 2007
  fields Physics
and research's language is English
 Authors Kevin Bundy




Ask ChatGPT about the research

Utilizing Chandra X-ray observations in the All-wavelength Extended Groth Strip International Survey (AEGIS) we identify 241 X-ray selected Active Galactic Nuclei (AGNs, L > 10^{42} ergs/s) and study the properties of their host galaxies in the range 0.4 < z < 1.4. By making use of infrared photometry from Palomar Observatory and BRI imaging from the Canada-France-Hawaii Telescope, we estimate AGN host galaxy stellar masses and show that both stellar mass and photometric redshift estimates (where necessary) are robust to the possible contamination from AGNs in our X-ray selected sample. Accounting for the photometric and X-ray sensitivity limits of the survey, we construct the stellar mass function of X-ray selected AGN host galaxies and find that their abundance decreases by a factor of ~2 since z~1, but remains roughly flat as a function of stellar mass. We compare the abundance of AGN hosts to the rate of star formation quenching observed in the total galaxy population. If the timescale for X-ray detectable AGN activity is roughly 0.5-1 Gyr--as suggested by black hole demographics and recent simulations--then we deduce that the inferred AGN trigger rate matches the star formation quenching rate, suggesting a link between these phenomena. However, given the large range of nuclear accretion rates we infer for the most massive and red hosts, X-ray selected AGNs may not be directly responsible for quenching star formation.



rate research

Read More

Galactic gas-gas collisions involving a turbulent multiphase ISM share common ISM properties: dense extraplanar gas visible in CO, large linewidths (>= 50 km/s), strong mid-infrared H_2 line emission, low star formation activity, and strong radio continuum emission. Gas-gas collisions can occur in the form of ICM ram pressure stripping, galaxy head-on collisions, compression of the intragroup gas and/or galaxy ISM by an intruder galaxy which flies through the galaxy group at a high velocity, or external gas accretion on an existing gas torus in a galactic center. We suggest that the common theme of all these gas-gas interactions is adiabatic compression of the ISM leading to an increase of the turbulent velocity dispersion of the gas. The turbulent gas clouds are then overpressured and star formation is quenched. Within this scenario we developed a model for turbulent clumpy gas disks where the energy to drive turbulence is supplied by external infall or the gain of potential energy by radial gas accretion within the disk. The cloud size is determined by the size of a C-type shock propagating in dense molecular clouds with a low ionization fraction at a given velocity dispersion. We give expressions for the expected volume and area filling factors, mass, density, column density, and velocity dispersion of the clouds. The latter is based on scaling relations of intermittent turbulence whose open parameters are estimated for the CND in the Galactic Center. The properties of the model gas clouds and the external mass accretion rate necessary for the quenching of the star formation rate due to adiabatic compression are consistent with those derived from high-resolution H_2 line observations. Based on these findings, a scenario for the evolution of gas tori in galactic centers is proposed and the implications for star formation in the Galactic Center are discussed.
163 - Brent Groves IoA 2007
Using the large emission line galaxy sample from the Sloan Digital Sky Survey we show that Star forming galaxies, Seyferts, and low-ionization nuclear emission-line regions (LINERs) form clearly separated branches on the standard optical diagnostic diagrams. We derive a new empirical classification scheme which cleanly separates these emission-line galaxies, using strong optical emission lines. Using this classification we identify a few distinguishing host galaxy properties of each class, which, along with the emission line analysis, suggest continuous evolution from one class to another. As a final note, we introduce models of both Starforming galaxies and AGN narrow line regions which can explain the distribution of galaxies on standard emission line ratio diagrams, and possibly suggest new diagnostics across the emission spectrum.
Keplerian accretion discs around massive black holes (MBHs) are gravitationally unstable beyond a few hundredths of parsec and should collapse to form stars. Indeed an accretion/star formation episode took place a few millions years ago in the Galactic Center (GC). This raises the question of how the disc can survive in AGN and quasars and continue to transport matter towards the black hole. We study the accretion/star formation process, with one aim in mind, to show that a spectrum similar to the observed AGN one can be produced by the disc. We compute models of stationary accretion discs, both continuous and clumpy. Continuous discs must be maintained in a state of marginal stability for the rate of star formation to remain modest, so they require additional heating and transport of angular momentum. Non-viscous heating can be provided by stellar illumination, but momentum transport by supernovae is insufficient to sustain a marginal state, except at the very periphery of the disc. In clumpy discs it is possible to account for the required accretion rate through interactions between clouds, but this model is unsatisfactory as its parameters are tightly constrained without any physical justification. Finally one must appeal to non-stationary discs with intermittent accretion episodes like those that occurred in the GC, but such a model is probably not applicable to luminous high redshift quasars neither to radio-loud quasars.
The old, red stars which constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly from accretion onto black holes. It is widely suspected, but unproven, that the tight correlation in mass of the black hole and stellar components results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, while powerful star-forming galaxies are usually dust-obscured and are brightest at infrared to submillimetre wavelengths. Here we report observations in the submillimetre and X-ray which show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 Gyrs old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10^44 erg/s. This suppression of star formation in the host galaxies of powerful AGN is a key prediction of models in which the AGN drives a powerful outflow, expelling the interstellar medium of its host galaxy and transforming the galaxys properties in a brief period of cosmic time.
155 - Viviana Casasola 2015
We present an analysis of the relation between star formation rate (SFR) surface density (sigmasfr) and mass surface density of molecular gas (sigmahtwo), commonly referred to as the Kennicutt-Schmidt (K-S) relation, at its intrinsic spatial scale, i.e. the size of giant molecular clouds (10-150 pc), in the central, high-density regions of four nearby low-luminosity active galactic nuclei (AGN). We used interferometric IRAM CO(1-0) and CO(2-1), and SMA CO(3-2) emission line maps to derive sigmahtwo and HST-Halpha images to estimate sigmasfr. Each galaxy is characterized by a distinct molecular SF relation at spatial scales between 20 to 200 pc. The K-S relations can be sub-linear, but also super-linear, with slopes ranging from 0.5 to 1.3. Depletion times range from 1 and 2Gyr, compatible with results for nearby normal galaxies. These findings are valid independently of which transition, CO(1-0), CO(2-1), or CO(3-2), is used to derive sigmahtwo. Because of star-formation feedback, life-time of clouds, turbulent cascade, or magnetic fields, the K-S relation might be expected to degrade on small spatial scales (<100 pc). However, we find no clear evidence for this, even on scales as small as 20 pc, and this might be because of the higher density of GMCs in galaxy centers which have to resist higher shear forces. The proportionality between sigmahtwo and sigmasfr found between 10 and 100 Msun/pc2 is valid even at high densities, 10^3 Msun/pc2. However, by adopting a common CO-to-H2 conversion factor (alpha_CO), the central regions of the galaxies have higher sigmasfr for a given gas column than those expected from the models, with a behavior that lies between the mergers/high-redshift starburst systems and the more quiescent star-forming galaxies, assuming that the first ones require a lower value of alpha_CO.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا