Using Magellan/IMACS images covering a 1.2 x 1.2 sq. degree FOV with seeing of 0.4-0.6, we have applied convolution techniques to analyse the light distribution of 364 confirmed globular cluster in the field of NGC 5128 and to obtain their structural parameters. Combining these parameters with existing Washington photometry from Harris et al. (2004), we are able to examine the size difference between metal-poor (blue) and metal-rich (red) globular clusters. For the first time, this can be addressed on a sample of confirmed clusters that extends to galactocentric distances about 8 times the effective radius, R$_{eff}$, of the galaxy. Within 1 R$_{eff}$, red clusters are about 30% smaller on average than blue clusters, in agreement with the vast majority of extragalactic globular cluster systems studied. As the galactocentric distance increases, however, this difference becomes negligible. Thus, our results indicate that the difference in the clusters effective radii, r$_e$, could be explained purely by projection effects, with red clusters being more centrally concentrated than blue ones and an intrinsic r$_e$--R$_{gc}$ dependence, like the one observed for the Galaxy.