Do you want to publish a course? Click here

Polish grid infrastructure for science and research

508   0   0.0 ( 0 )
 Added by Wojciech Wislicki
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

Structure, functionality, parameters and organization of the computing Grid in Poland is described, mainly from the perspective of high-energy particle physics community, currently its largest consumer and developer. It represents distributed Tier-2 in the worldwide Grid infrastructure. It also provides services and resources for data-intensive applications in other sciences.



rate research

Read More

112 - Harry Enke 2010
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites, and advanced applications for specific scientific purposes, such as a connection to robotic telescopes. We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.
The Open Science Grid(OSG) is a world-wide computing system which facilitates distributed computing for scientific research. It can distribute a computationally intensive job to geo-distributed clusters and process jobs tasks in parallel. For compute clusters on the OSG, physical resources may be shared between OSG and clusters local user-submitted jobs, with local jobs preempting OSG-based ones. As a result, job preemptions occur frequently in OSG, sometimes significantly delaying job completion time. We have collected job data from OSG over a period of more than 80 days. We present an analysis of the data, characterizing the preemption patterns and different types of jobs. Based on observations, we have grouped OSG jobs into 5 categories and analyze the runtime statistics for each category. we further choose different statistical distributions to estimate probability density function of job runtime for different classes.
Background: Qualitative interviewing is a common tool that has been utilized by Science, Technology, Engineering, and Mathematics (STEM) education researchers to explore and describe the experiences of students, educators, or other educational stakeholders. Some interviewing techniques use co-creation of an artifact, such as a personal timeline, as a unique way to elicit a detailed narrative from a respondent. The purpose of this commentary is to describe an interview artifact called a life grid. First used and validated in medical sociology to conduct life course research, we adapted the life grid for use in research on undergraduate STEM education. We applied the life grid interview technique to two contexts: 1) students in an advance degree program reflecting on their entire undergraduate career as a biology major, and 2) students in an undergraduate physics program reflecting on a multi-week lab project. Results: We found that the life grid supported four important attributes of an interview: facilitation of the respondents agency, establishment of rapport between interviewers and respondents, enhanced depth of the respondents narratives, and the construction of more accurate accounts of events. We situate our experiences with respect to those attributes and compare them with the experiences detailed in literature. Conclusions: We conclude with recommendations for future use of the life grid technique in undergraduate STEM education research. Overall, we find the life grid to be a valuable tool to use when conducting interviews about phenomena with a chronological component.
During the first observation run the LIGO collaboration needed to offload some of its most, intense CPU workflows from its dedicated computing sites to opportunistic resources. Open Science Grid enabled LIGO to run PyCbC, RIFT and Bayeswave workflows to seamlessly run in a combination of owned and opportunistic resources. One of the challenges is enabling the workflows to use several heterogeneous resources in a coordinated and effective way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا