Do you want to publish a course? Click here

Strain-induced insulator state in La_0.7Sr_0.3CoO_3

228   0   0.0 ( 0 )
 Added by Diana Rata
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the observation of a strain-induced insulator state in ferromagnetic La_0.7Sr_0.3CoO_3 films. Tensile strain above 1% is found to enhance the resistivity by several orders of magnitude. Reversible strain of 0.15% applied using a piezoelectric substrate triggers huge resistance modulations, including a change by a factor of 10 in the paramagnetic regime at 300 K. However, below the ferromagnetic ordering temperature, the magnetization data indicate weak dependence on strain for the spin state of the Co ions. We interpret the changes observed in the transport properties in terms of a strain-induced splitting of the Co e_g levels and reduced double exchange, combined with a percolation-type conduction in an electronic cluster state.



rate research

Read More

Using ab initio calculations, we have investigated an insulating tetragonally distorted perovskite BaCrO$_3$ with a formal $3d^2$ configuration, the volume of which is apparently substantially enhanced by a strain due to SrTiO$_3$ substrate. Inclusion of both correlation and spin-orbit coupling (SOC) effects leads to a metal-insulator transition and in-plane zigzag orbital-ordering (OO) of alternating singly filled $d_{xz}+id_{yz}$ and $d_{xz}-id_{yz}$ orbitals, which results in a large orbital moment $M_L$ ~ -0.78 $mu_B$ antialigned to the spin moment $M_S$ ~ $2|M_L|$ in Cr ions. Remarkably, this ordering also induces a considerable $M_L$ for apical oxygens. Our findings show metal-insulator and OO transitions, driven by an interplay among strain, correlation, and SOC, which is uncommon in 3d systems.
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
184 - Jian Liu , M. Kareev , B. Gray 2010
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistivity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO$_{3}$, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.
Tuning the electronic properties of a matter is of fundamental interest in scientific research as well as in applications. Recently, the Mott insulator-metal transition has been reported in a pristine layered transition metal dichalcogenides 1T-TaS$_2$, with the transition triggered by an optical excitation, a gate controlled intercalation, or a voltage pulse. However, the sudden insulator-metal transition hinders an exploration of how the transition evolves. Here, we report the strain as a possible new tuning parameter to induce Mott gap collapse in 1T-TaS$_2$. In a strain-rich area, we find a mosaic state with distinct electronic density of states within different domains. In a corrugated surface, we further observe and analyze a smooth evolution from a Mott gap state to a metallic state. Our results shed new lights on the understanding of the insulator-metal transition and promote a controllable strain engineering on the design of switching devices in the future.
A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling and Hunds coupling energy in two-dimensional (2D) van der Waals (vdW) material produces novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe$_3$, that provides a promising platform to simultaneously manipulate the magnetic and electrical properties for potential device implementation using few layers thick materials. Here, we show a continuous tuning of magnetic and electrical properties of CrGeTe$_3$ single crystal using pressure. With application of pressure, CrGeTe$_3$ transforms from a FM insulator with Curie temperature, $T_{rm{C}} sim $ 66 K at ambient condition to a correlated 2D Fermi metal with $T_{rm{C}}$ exceeding $sim$ 250 K. Notably, absence of an accompanying structural distortion across the insulator-metal transition (IMT) suggests that the pressure induced modification of electronic ground states are driven by electronic correlation furnishing a rare example of bandwidth-controlled IMT in a vdW material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا