Do you want to publish a course? Click here

Study of DiMuon Rare Beauty Decays with ATLAS and CMS

261   0   0.0 ( 0 )
 Added by Antonio Policicchio
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The LHC experiments will perform sensitive tests of physics beyond the Standard Model (BSM). The investigation of decays of beauty hadrons represents an alternative approach in addition to direct BSM searches. The ATLAS and CMS efforts concentrate on those B-decays that can be efficiently selected already at the first and second level trigger. The most favorable trigger signature will be for $B$-hadron decays with muons in the final state. Using this trigger, ATLAS and CMS will be able to accommodate unprecedentedly high statistics in the rare decay sector. These are purely dimuon decays, and families of semimuonic exclusive channels. Already with data corresponding to an integrated luminosity of ensuremath{1 fb^{-1}}, the sensitivity in the dimuon channels will be comparable to present measurements (world average). The strategy is to carry on the dimuon channel program up to nominal LHC luminosity. In particular the ensuremath{B_s to mumu} signal with ensuremath{sim}5 sigma significance can be measured combining low luminosity ensuremath{10^{33}cm^{-2} s^{-1}} samples with those of one year of LHC operation at a luminosity of ensuremath{10^{34}cm^{-2} s^{-1}



rate research

Read More

78 - Linwei Li 2017
The flavour changing neutral current decays can be interesting probes for searching for New Physics. Angular distributions of the decay $mathrm{B}^0 to mathrm{K}^{*0} mu^ +mu^-$ are studied using a sample of proton-proton collisions at $sqrt{s} = 8~mathrm{TeV}$ collected with the CMS detector at the LHC, corresponding to an integrated luminosity of $20.5~mathrm{fb}^{-1}$. An angular analysis is performed to determine $P_1$ and $P_5$, where $P_5$ is of particular interest due to recent measurements that indicate a potential discrepancy with the standard model. Based on a sample of 1397 signal events, $P_1$ and $P_5$ angular parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with standard model predictions.
The large ttbar production cross-section at the LHC suggests the use of top quark decays to calibrate several critical parts of the detectors, such as the trigger system, the jet energy scale and b-tagging.
First observations of the decays $Lambda_b^0 to Lambda_c^+ D_{(s)}^-$ are reported using data corresponding to an integrated luminosity of $3,{rm fb}^{-1}$ collected at 7 and 8 TeV center-of-mass energy in proton-proton collisions with the LHCb detector. In addition, the most precise measurement of the branching fraction ${mathcal{B}(B_s^0 to D^+D_s^-)}$ is made and a search is performed for the decays $B^0_{(s)} to Lambda_c^+ Lambda_c^-$. The results obtained are begin{eqnarray*} mathcal{B}(Lambda_b^0 to Lambda_c^+ D^-)/mathcal{B}(Lambda_b^0 to Lambda_c^+ D_{s}^-) &=& 0.042 pm 0.003({rm stat}) pm 0.003({rm syst}), left[frac{mathcal{B}(Lambda_b^0 to Lambda_c^+ D_{s}^-)}{mathcal{B}({kern 0.2em}overline{kern -0.2em B}_d^0 to D^+D_s^-)}right]big/left[frac{mathcal{B}(Lambda_b^0 to Lambda_c^+pi^-)}{mathcal{B}({kern 0.2em}overline{kern -0.2em B}_d^0 to D^+pi^-)}right] &=& 0.96 pm 0.02({rm stat}) pm 0.06({rm syst}), mathcal{B}(B_s^0 to D^+D_s^-)/mathcal{B}({kern 0.2em}overline{kern -0.2em B}_d^0 to D^+D_s^-) &=& 0.038pm0.004({rm stat})pm0.003({rm syst}), mathcal{B}({kern 0.2em}overline{kern -0.2em B}^0 to Lambda_c^+ Lambda_c^-)/mathcal{B}({kern 0.2em}overline{kern -0.2em B}_d^0 to D^+D_s^-) & < & 0.0022; [95% ; {rm C.L.}], mathcal{B}(B^0_{s} to Lambda_c^+ Lambda_c^-)/mathcal{B}(B_s^0 to D^+D_s^-) & < & 0.30; [95% ; {rm C.L.}]. end{eqnarray*} Measurement of the mass of the $Lambda_b^0$ baryon relative to the $B^0$ meson gives ${M(Lambda_b^0) -M(B^0) = 339.72pm 0.24({rm stat}) pm 0.18({rm syst})}$ MeV$/c^2$. This result provides the most precise measurement of the mass of the $Lambda_b^0$ baryon to date.
The combination of simple dynamics, small number of available decay channels, and extremely well controlled radiative and loop corrections, make charged pion decays a sensitive means for testing the underlying symmetries and the universality of weak fermion couplings, as well as for improving our understanding of pion structure and chiral dynamics. This paper reviews the current state of experimental study of the allowed rare decays of charged pions: (a) leptonic, $pi^+ to e^+ u_e$, or $pi_{e2}$, (b) radiative, $pi^+ to e^+ u_egamma$, or $pi_{e2gamma}$, and $pi^+ to e^+ u_e e^+e^-$, or $pi_{e2ee}$, and (c) semileptonic, $pi^+to pi^0 e^+ u$, or $pi_{e3}$. Taken together, the combined data set presents an internally consistent picture that also agrees well with standard model predictions. The internal consistency is illustrated well by the $pi_{e2}$ branching ratio of $(R_{e/mu}^pi)^{rm PIBETA} = (1.2366 pm 0.0064) times 10^{-4}$ extracted in this work from the PIBETA measurement of the $pi_{e3}$ decay and the current best value for the CKM matrix element $V_{ud}$. However, even after the great progress of the recent decades, experimental precision is lagging far behind that of the theoretical description for all above processes. We review the implications of the present state of knowledge and prospects for further improvement in the near term.
The ATLAS experiment sensitivity to top quark Flavour Changing Neutral Current (FCNC) decays was studied at LHC using ttbar events. While one of the top quarks is expected to follow the dominant Standard Model decay t->bW, the other decays through a FCNC channel, i.e. t-> Z u(c), t-> gamma u(c) or t-> g u(c). Different types of analyses, applied to each FCNC decay mode, were compared. The FCNC branching ratio sensitivity (assuming a 5sigma signal significance) and 95% confidence level limits on the branching ratios (in the hypothesis of signal absence) were obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا