Do you want to publish a course? Click here

Ground-state phase diagram and magnetic properties of a tetramerized spin-1/2 J_1-J_2 model: BEC of bound magnons and absence of the transverse magnetization

86   0   0.0 ( 0 )
 Added by Hiroaki Ueda
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the ground state and the magnetization process of a spin-1/2 $J_1$-$J_2$ model with a plaquette structure by using various methods. For small inter-plaquette interaction, this model is expected to have a spin-gap and we computed the first- and the second excitation energies. If the gap of the lowest excitation closes, the corresponding particle condenses to form magnetic orders. By analyzing the quintet gap and magnetic interactions among the quintet excitations, we find a spin-nematic phase around $J_1/J_2sim -2$ due to the strong frustration and the quantum effect. When high magnetic moment is applied, not the spin-1 excitations but the spin-2 ones soften and dictate the magnetization process. We apply a mean-field approximation to the effective Hamiltonian to find three different types of phases (a conventional BEC phase, ``striped supersolid phases and a 1/2-plateau). Unlike the BEC in spin-dimer systems, this BEC phase is not accompanied by transverse magnetization. Possible connection to the recently discovered spin-gap compound (CuCl)LaNb2O7 is discussed.



rate research

Read More

The spin-1/2 $J_1$-$J_2$ Heisenberg model on square lattices are investigated via the finite projected entangled pair states (PEPS) method. Using the recently developed gradient optimization method combining with Monte Carlo sampling techniques, we are able to obtain the ground states energies that are competitive to the best results. The calculations show that there is no Neel order, dimer order and plaquette order in the region of 0.42 $lesssim J_2/J_1lesssim$ 0.6, suggesting a single spin liquid phase in the intermediate region. Furthermore, the calculated staggered spin, dimer and plaquette correlation functions all have power law decay behaviours, which provide strong evidences that the intermediate nonmagnetic phase is a single gapless spin liquid state.
We study the phase diagram of the frustrated Heisenberg model on the triangular lattice with nearest and next-nearest neighbor spin exchange coupling, on 3-leg ladders. Using the density-matrix renormalization-group method, we obtain the complete phase diagram of the model, which includes quasi-long-range $120^circ$ and columnar order, and a Majumdar-Ghosh phase with short-ranged correlations. All these phases are non-chiral and planar. We also identify the nature of phase transitions.
We use the state-of-the-art tensor network state method, specifically, the finite projected entangled pair state (PEPS) algorithm, to simulate the global phase diagram of spin-$1/2$ $J_1$-$J_2$ Heisenberg model on square lattices up to $24times 24$. We provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid (QSL), whose spin-spin and dimer-dimer correlations both decay with a power law behavior. There also exists a valence-bond solid (VBS) phase in a very narrow region $0.56lesssim J_2/J_1leq0.61$ before the system enters the well known collinear antiferromagnetic phase. We stress that our work gives rise to the first solid PEPS results beyond the well established density matrix renormalization group (DMRG) through one-to-one direct benchmark for small system sizes. Thus our numerical evidences explicitly demonstrate the huge power of PEPS for solving long-standing 2D quantum many-body problems. The physical nature of the discovered gapless QSL and potential experimental implications are also addressed.
We study the phase diagram of the 2D $J_1$-$J_1$-$J_2$ spin-1/2 Heisenberg model by means of the coupled cluster method. The effect of the coupling $J_1$ on the Neel and stripe states is investigated. We find that the quantum critical points for the Neel and stripe phases increase as the coupling strength $J_1$ is increased, and an intermediate phase emerges above the region at $J_1 approx 0.6$ when $J_1=1$. We find indications for a quantum triple point at $J_1 approx 0.60 pm 0.03$, $J_2 approx 0.33 pm 0.02$ for $J_1=1$.
93 - Shou-Shu Gong , Wei Zhu , 2015
Strongly correlated systems with geometric frustrations can host the emergent phases of matter with unconventional properties. Here, we study the spin $S = 1$ Heisenberg model on the honeycomb lattice with the antiferromagnetic first- ($J_1$) and second-neighbor ($J_2$) interactions ($0.0 leq J_2/J_1 leq 0.5$) by means of density matrix renormalization group (DMRG). In the parameter regime $J_2/J_1 lesssim 0.27$, the system sustains a N{e}el antiferromagnetic phase. At the large $J_2$ side $J_2/J_1 gtrsim 0.32$, a stripe antiferromagnetic phase is found. Between the two magnetic ordered phases $0.27 lesssim J_2/J_1 lesssim 0.32$, we find a textit{non-magnetic} intermediate region with a plaquette valence-bond order. Although our calculations are limited within $6$ unit-cell width on cylinder, we present evidence that this plaquette state could be a strong candidate for this non-magnetic region in the thermodynamic limit. We also briefly discuss the nature of the quantum phase transitions in the system. We gain further insight of the non-magnetic phases in the spin-$1$ system by comparing its phase diagram with the spin-$1/2$ system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا