No Arabic abstract
Ferrario & Wickramasinghe (2006) explored the hypothesis that the magnetic fields of neutron stars are of fossil origin. In this context, they predicted the field distribution of the progenitor OB stars, finding that 5 per cent of main sequence massive stars should have fields in excess of 1kG. We have carried out sensitive ESPaDOnS spectropolarimetric observations to search for direct evidence of such fields in all massive B- and O-type stars in the Orion Nebula Cluster star-forming region. We have detected unambiguous Stokes V Zeeman signatures in spectra of three out of the eight stars observed (38%). Using a new state-of-the-art Bayesian analysis, we infer the presence of strong (kG), organised magnetic fields in their photospheres. For the remaining five stars, we constrain any dipolar fields in the photosphere to be weaker than about 200G. Statistically, the chance of finding three ~kG fields in a sample of eight OB stars is quite low (less than 1%) if the predictions of Ferrario & Wickramasinghe are correct. This implies that either the magnetic fields of neutron stars are not of fossil origin, that the flux-evolution model of Ferrario & Wickramasinghe is incomplete, or that the ONC has unusual magnetic properties. We are undertaking a study of other young star clusters, in order to better explore these possibilities.
Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FORS2 (FOcal Reducer low dispersion Spectrograph) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic Optical Telescope (NOT) and HARPS mounted at the ESO 3.6m between 2008 and 2011. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. The presence of a magnetic field is confirmed in nine stars previously observed with FORS1/2: HD36879, HD47839, CPD-282561, CPD-472963, HD93843, HD148937, HD149757, HD328856, and HD164794. New magnetic field detections at a significance level of at least 3sigma were achieved in five stars: HD92206c, HD93521, HD93632, CPD-468221, and HD157857. Among the stars with a detected magnetic field, five stars belong to open clusters with high membership probability. According to previous kinematic studies, five magnetic O-type stars in our sample are candidate runaway stars.
We derive an equation of state for magnetized charge neutral nuclear matter relevant for neutron star structure. The calculations are performed within an effective chiral model based on generalization of sigma model with nonlinear self interactions of the sigma mesons along with vector mesons and a $rho-sigma$ cross-coupling term. The effective chiral model is extended by introducing the contributions of strong magnetic field on the charged particles of the model. The contributions arising from the effects of magnetic field on the Dirac sea of charged baryons are also included. The resulting equation of state for the magnetized dense matter is used to investigate the neutron star properties, like, mass-radius relation and tidal deformability. The dimensionless tidal deformability of $1.4~{M}_odot$ NS is found to be $Lambda_{1.4}=526$, which is consistent with recent observation of GW170817. The maximum mass of neutron star in presence of strong magnetic field is consistent with the observational constraints on mass of neutron star from PSR~ J0348 - 0432 and the radius at $1.4~{M}_odot$ mass of the neutron star is within the empirical bounds.
We review the measurements of magnetic fields of OB stars and compile a catalog of magnetic OB stars. Based on available data we confirm that magnetic field values are distributed according to a log--normal law with a mean log(B)=2.53 and a standard deviation $sigma=0.54$. We also investigate the formation of the magnetic field of OBA stars before the Main Sequence (MS).
We propose a general method to self-consistently study the quasistationary evolution of the magnetic field in the cores of neutron stars. The traditional approach to this problem is critically revised. Our results are illustrated by calculation of the typical timescales for the magnetic field dissipation as functions of temperature and the magnetic field strength.
The origin of the magnetic fields in neutron stars, and the physical differences between magnetars and strongly magnetised radio pulsars are still under vigorous debate. It has been suggested that the properties of the progenitors of neutron stars (the massive OB stars), such as rotation, magnetic fields and mass, may play an important role in the outcome of core collapse leading to type II SNe. Therefore, knowing the magnetic properties of the progenitor OB stars would be an important asset for constraining models of stellar evolution leading to the birth of a neutron star. We present here the beginning of a broad study with the goal of characterising the magnetic properties of main sequence massive OB stars. We report the detection of two new massive magnetic stars in the Orion Nebula Cluster: Par 1772 (HD 36982) and NU Ori (HD 37061), for which the estimated dipole polar strengths, with 1 sigma error bars, are 1150 (+320,-200) G and 650 (+220,-170) G respectively.