Fun with Analysis I: basic theorems in calculus revisited


Abstract in English

This note tries to show that a re-examination of a first course in analysis, using the more sophisticated tools and approaches obtained in later stages, can be a real fun for experts, advanced students, etc. We start by going to the extreme, namely we present two proofs of the Extreme Value Theorem: the programmer proof that suggests a method (which is practical in down-to-earth settings) to approximate, to any required precision, the extreme values of the given function in a metric space setting, and an abstract space proof (the level-set proof) for semicontinuous functions defined on compact topological spaces. Next, in the intermediate part, we consider the Intermediate Value Theorem, generalize it to a wide class of discontinuous functions, and re-examine the meaning of the intermediate value property. The trek reaches the final frontier when we discuss the Uniform Continuity Theorem, generalize it, re-examine the meaning of uniform continuity, and find the optimal delta of the given epsilon. Have fun!

Download