No Arabic abstract
An 60Fe peak in a deep-sea FeMn crust has been interpreted as due to the signature left by the ejecta of a supernova explosion close to the solar system 2.8 +/- 0.4 Myr ago [Knie et al., Phys. Rev. Lett. 93, 171103 (2004)]. To confirm this interpretation with better time resolution and obtain a more direct flux estimate, we measured 60Fe concentrations along a dated marine sediment. We find no 60Fe peak at the expected level from 1.7 to 3.2 Myr ago. However, applying the same chemistry used for the sediment, we confirm the 60Fe signal in the FeMn crust. The cause of the discrepancy is discussed.
A new high-efficiency and low-background system for the measurement of natural gamma radioactivity in marine sediment and rock cores retrieved from beneath the seabed was designed, built, and installed on the JOIDES Resolution research vessel. The system includes eight large NaI(Tl) detectors that measure adjacent intervals of the core simultaneously, maximizing counting times and minimizing statistical error for the limited measurement times available during drilling expeditions. Effect to background ratio is maximized with passive lead shielding, including both ordinary and low-activity lead. Large-area plastic scintillator active shielding filters background associated with the high-energy part of cosmic radiation. The new system has at least an order of magnitude higher statistical reliability and significantly enhances data quality compared to other offshore natural gamma radiation (NGR) systems designed to measure geological core samples. Reliable correlations and interpretations of cored intervals are possible at rates of a few counts per second.
Samples of two deep-sea sediment cores from the Indian Ocean are analyzed with accelerator mass spectrometry (AMS) to search for traces of recent supernova activity around 2 Myr ago. Here, long-lived radionuclides, which are synthesized in massive stars and ejected in supernova explosions, namely 26Al, 53Mn and 60Fe, are extracted from the sediment samples. The cosmogenic isotope 10Be, which is mainly produced in the Earths atmosphere, is analyzed for dating purposes of the marine sediment cores. The first AMS measurement results for 10Be and 26Al are presented, which represent for the first time a detailed study in the time period of 1.7-3.1 Myr with high time resolution. Our first results do not support a significant extraterrestrial signal of 26Al above terrestrial background. However, there is evidence that, like 10Be, 26Al might be a valuable isotope for dating of deep-sea sediment cores for the past few million years.
We have searched for hadronic axions which may be produced in the Sun by a bremsstrahlung-like process, and observed in the HPGe detector by an axioelectric effect. A conservative upper limit on the hadronic axion mass m_a < 334 eV at 95% C.L. is obtained. Our experimental approach is based on the axion-electron coupling and it does not include the axion-nucleon coupling, which suffers from the large uncertainties related to the estimation of the flavor-singlet axial-vector matrix element.
Searches are performed for both prompt-like and long-lived dark photons, $A^{prime}$, produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using $A^{prime}tomu^+mu^-$ decays and a data sample corresponding to an integrated luminosity of 1.6 fb$^{-1}$ collected with the LHCb detector. The prompt-like $A^{prime}$ search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived $A^{prime}$ search is restricted to the low-mass region $214<m(A^{prime})<350$ MeV. No evidence for a signal is found, and 90% confidence level exclusion limits are placed on the $gamma$-$A^{prime}$ kinetic-mixing strength. The constraints placed on prompt-like dark photons are the most stringent to date for the mass range $10.6 < m(A^{prime}) < 70$ GeV, and are comparable to the best existing limits for $m(A^{prime}) < 0.5$ GeV. The search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature.
A search for centrally produced charmonium states has been presented. There is no significant evidence for any charmonium production. An upper limit of 2 nb is found for the cross section of chic production using the decay chic(1P)-> J/psi gamma.