Do you want to publish a course? Click here

Luminosity determination for the quasi-free nuclear reactions

98   0   0.0 ( 0 )
 Added by Rafal Czyzykiewicz
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

A method for the calculation of the luminosity for the proton-nucleus collisions based on the quasi-free proton-proton scattering is presented. As an example of application the integrated luminosity for the scattering of protons off the deuteron target is determined for the experiment of the quasi-free pn --> pneta reaction performed by means of the COSY-11 facility.



rate research

Read More

444 - Y.M. Xing , J. Glorius , L. Varga 2020
Luminosity is a measure of the colliding frequency between beam and target and it is a crucial parameter for the measurement of absolute values, such as reaction cross sections. In this paper, we make use of experimental data from the ESR storage ring to demonstrate that the luminosity can be precisely determined by modelling the measured Rutherford scattering distribution. The obtained results are in good agreement with an independent measurement based on the x-ray normalization method. Our new method provides an alternative way to precisely measure the luminosity in low-energy stored-beam configurations. This can be of great value in particular in dedicated low-energy storage rings where established methods are difficult or impossible to apply.
Isoscaling, where ratios of isotopes emitted from two reactions exhibit an exponential dependence on the neutron and proton number of the isotope, has been observed over a variety of reactions including evaporation, strongly damped binary collision, and multifragmentation. The conditions for isoscaling to occur as well as the conditions when isoscaling fails are investigated.
The evolution of the traditional nuclear magic numbers away from the valley of stability is an active field of research. Experimental efforts focus on providing key spectroscopic information that will shed light into the structure of exotic nuclei and understanding the driving mechanism behind the shell evolution. In this work, we investigate the Z = 6 spin-orbit shell gap towards the neutron dripline. To do so, we employed $^{A}$N(p,2p)$^{A-1}$C quasi-free scattering reactions to measure the proton component of the 2$^+_1$ state of $^{16,18,20}$C. The experimental findings support the notion of a moderate reduction of the proton 1p$_{1/2}$-1p$_{3/2}$ spin-orbit splitting, at variance to recent claims for a prevalent Z = 6 magic number towards the neutron dripline.
New results for the strength of the symmetry energy are presented which illustrate the complementary aspects encountered in reactions probing nuclear densities below and above saturation. A systematic study of isotopic effects in spectator fragmentation was performed at the ALADIN spectrometer with 124Sn primary and 107Sn and 124La secondary beams of 600 MeV/nucleon incident energy. The analysis within the Statistical Fragmentation Model shows that the symmetry-term coefficient entering the liquid-drop description of the emerging fragments decreases significantly as the multiplicity of fragments and light particles from the disintegration of the produced spectator systems increases. Higher densities were probed in the FOPI/LAND study of nucleon and light-particle flows in central and mid-peripheral collisions of 197Au+197Au nuclei at 400 MeV/nucleon incident energy. From the comparison of the measured neutron and hydrogen squeeze-out ratios with predictions of the UrQMD model a moderately soft symmetry term with a density dependence of the potential term proportional to (rho/rho_0)^{gamma} with gamma = 0.9 +- 0.3 is favored.
127 - C. Lehr 2021
The proton drip-line nucleus 17Ne is investigated experimentally in order to determine its two-proton halo character. A fully exclusive measurement of the 17Ne(p,2p)16F->15O+p quasi-free one-proton knockout reaction has been performed at GSI at around 500 MeV/nucleon beam energy. All particles resulting from the scattering process have been detected. The relevant reconstructed quantities are the angles of the two protons scattered in quasi-elastic kinematics, the decay of 16F into 15O (including gamma decays from excited states) and a proton, as well as the 15O+p relative-energy spectrum and the 16F momentum distributions. The latter two quantities allow an independent and consistent determination of the ratio of l=0 and l=2 motion of the valence protons in 17Ne. With a resulting relatively small l=0 component of only around 35(3)%, it is concluded that 17Ne exhibits a rather modest halo character only. The quantitative agreement of the two values deduced from the energy spectrum and the momentum distributions supports the theoretical treatment of the calculation of momentum distributions after quasi-free knockout reactions at high energies by taking into account distortions based on the Glauber theory. Moreover, the experimental data allow the separation of valence-proton knockout and knockout from the 15O core. The latter process contributes with 11.8(3.1) mb around 40% to the total proton-knockout cross section of 30.3(2.3) mb, which explains previously reported contradicting conclusions derived from inclusive cross sections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا