Computational Steering of Cluster Formation in Brownian Suspensions


Abstract in English

We simulate cluster formation of model colloidal particles interacting via DLVO (Derjaguin, Landau, Vervey, Overbeek) potentials. The interaction potentials can be related to experimental conditions, defined by the pH-value, the salt concentration and the volume fraction of solid particles suspended in water. The system shows different structural properties for different conditions, including cluster formation, a glass-like repulsive structure, or a liquid suspension. Since many simulations are needed to explore the whole parameter space, when investigating the properties of the suspension depending on the experimental conditions, we have developed a steering approach to control a running simulation and to detect interesting transitions from one region in the configuration space to another. The advantages of the steering approach and the restrictions of its applicability due to physical constraints are illustrated by several example cases.

Download