Guessing Facets: Polytope Structure and Improved LP Decoding


Abstract in English

In this paper we investigate the structure of the fundamental polytope used in the Linear Programming decoding introduced by Feldman, Karger and Wainwright. We begin by showing that for expander codes, every fractional pseudocodeword always has at least a constant fraction of non-integral bits. We then prove that for expander codes, the active set of any fractional pseudocodeword is smaller by a constant fraction than the active set of any codeword. We further exploit these geometrical properties to devise an improved decoding algorithm with the same complexity order as LP decoding that provably performs better, for any blocklength. It proceeds by guessing facets of the polytope, and then resolving the linear program on these facets. While the LP decoder succeeds only if the ML codeword has the highest likelihood over all pseudocodewords, we prove that the proposed algorithm, when applied to suitable expander codes, succeeds unless there exist a certain number of pseudocodewords, all adjacent to the ML codeword on the LP decoding polytope, and with higher likelihood than the ML codeword. We then describe an extended algorithm, still with polynomial complexity, that succeeds as long as there are at most polynomially many pseudocodewords above the ML codeword.

Download