Do you want to publish a course? Click here

Guessing Facets: Polytope Structure and Improved LP Decoding

143   0   0.0 ( 0 )
 Added by Alexandros Dimakis
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

In this paper we investigate the structure of the fundamental polytope used in the Linear Programming decoding introduced by Feldman, Karger and Wainwright. We begin by showing that for expander codes, every fractional pseudocodeword always has at least a constant fraction of non-integral bits. We then prove that for expander codes, the active set of any fractional pseudocodeword is smaller by a constant fraction than the active set of any codeword. We further exploit these geometrical properties to devise an improved decoding algorithm with the same complexity order as LP decoding that provably performs better, for any blocklength. It proceeds by guessing facets of the polytope, and then resolving the linear program on these facets. While the LP decoder succeeds only if the ML codeword has the highest likelihood over all pseudocodewords, we prove that the proposed algorithm, when applied to suitable expander codes, succeeds unless there exist a certain number of pseudocodewords, all adjacent to the ML codeword on the LP decoding polytope, and with higher likelihood than the ML codeword. We then describe an extended algorithm, still with polynomial complexity, that succeeds as long as there are at most polynomially many pseudocodewords above the ML codeword.



rate research

Read More

179 - Igal Sason , Sergio Verdu 2018
This paper provides upper and lower bounds on the optimal guessing moments of a random variable taking values on a finite set when side information may be available. These moments quantify the number of guesses required for correctly identifying the unknown object and, similarly to Arikans bounds, they are expressed in terms of the Arimoto-Renyi conditional entropy. Although Arikans bounds are asymptotically tight, the improvement of the bounds in this paper is significant in the non-asymptotic regime. Relationships between moments of the optimal guessing function and the MAP error probability are also established, characterizing the exact locus of their attainable values. The bounds on optimal guessing moments serve to improve non-asymptotic bounds on the cumulant generating function of the codeword lengths for fixed-to-variable optimal lossless source coding without prefix constraints. Non-asymptotic bounds on the reliability function of discrete memoryless sources are derived as well. Relying on these techniques, lower bounds on the cumulant generating function of the codeword lengths are derived, by means of the smooth Renyi entropy, for source codes that allow decoding errors.
A product code with single parity-check component codes can be described via the tools of a multi-kernel polar code, where the rows of the generator matrix are chosen according to the constraints imposed by the product code construction. Following this observation, successive cancellation decoding of such codes is introduced. In particular, the error probability of single parity-check product codes over binary memoryless symmetric channels under successive cancellation decoding is characterized. A bridge with the analysis of product codes introduced by Elias is also established for the binary erasure channel. Successive cancellation list decoding of single parity-check product codes is then described. For the provided example, simulations over the binary input additive white Gaussian channel show that successive cancellation list decoding outperforms belief propagation decoding applied to the code graph. Finally, the performance of the concatenation of a product code with a high-rate outer code is investigated via distance spectrum analysis. Examples of concatenations performing within $0.7$ dB from the random coding union bound are provided.
Staircase codes play an important role as error-correcting codes in optical communications. In this paper, a low-complexity method for resolving stall patterns when decoding staircase codes is described. Stall patterns are the dominating contributor to the error floor in the original decoding method. Our improvement is based on locating stall patterns by intersecting non-zero syndromes and flipping the corresponding bits. The approach effectively lowers the error floor and allows for a new range of block sizes to be considered for optical communications at a certain rate or, alternatively, a significantly decreased error floor for the same block size. Further, an improved error floor analysis is introduced which provides a more accurate estimation of the contributions to the error floor.
We consider transmission over a binary-input additive white Gaussian noise channel using low-density parity-check codes. One of the most popular techniques for decoding low-density parity-check codes is the linear programming decoder. In general, the linear programming decoder is suboptimal. I.e., the word error rate is higher than the optimal, maximum a posteriori decoder. In this paper we present a systematic approach to enhance the linear program decoder. More precisely, in the cases where the linear program outputs a fractional solution, we give a simple algorithm to identify frustrated cycles which cause the output of the linear program to be fractional. Then adding these cycles, adaptively to the basic linear program, we show improved word error rate performance.
The goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. A test is positive if it has at least $u$ defective items and negative otherwise. Our objective is to identify defective items in sublinear time the number of items, e.g., $mathrm{poly}(d, ln{n}),$ by using the number of tests as low as possible. In this paper, we reduce the number of tests to $O left( h times frac{d^2 ln^2{n}}{mathsf{W}^2(d ln{n})} right)$ and the decoding time to $O left( mathrm{dec}_0 times h right),$ where $mathrm{dec}_0 = O left( frac{d^{3.57} ln^{6.26}{n}}{mathsf{W}^{6.26}(d ln{n})} right) + O left( frac{d^6 ln^4{n}}{mathsf{W}^4(d ln{n})} right)$, $h = Oleft( frac{d_0^2 ln{frac{n}{d_0}}}{(1-p)^2} right)$ , $d_0 = max{u, d - u }$, $p in [0, 1),$ and $mathsf{W}(x) = Theta left( ln{x} - ln{ln{x}} right).$ If the number of tests is increased to $Oleft( h times frac{d^2ln^3{n}}{mathsf{W}^2(d ln{n})} right),$ the decoding complexity is reduced to $O left(mathrm{dec}_1 times h right),$ where $mathrm{dec}_1 = max left{ frac{d^2 ln^3{n}}{mathsf{W}^2(d ln{n})}, frac{ud ln^4{n}}{mathsf{W}^3(d ln{n})} right}.$ Moreover, our proposed scheme is capable of handling errors in test outcomes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا