The Keck Aperture Masking Experiment: Multi-Wavelength Observations of 6 Mira Variables


Abstract in English

The angular diameters of six oxygen rich Mira-type long-period variables have been measured at various near-infrared (NIR) wavelengths using the aperture masking technique in an extensive observing program from 1997 Jan to 2004 Sep. These data sets span many pulsation cycles of the observed objects and represent the largest study of multi-wavelength, multi-epoch interferometric angular diameter measurements on Mira stars to date. The calibrated visibility data of o Cet, R Leo, R Cas, W Hya, chi Cyg and R Hya are fitted using a uniform disk brightness distribution model to facilitate comparison between epochs, wavelengths and with existing data and theoretical models. The variation of angular diameter as a function of wavelength and time are studied, and cyclic diameter variations are detected for all objects in our sample. These variations are believed to stem from time-dependent changes of density and temperature (and hence varying molecular opacities) in different layers of these stars. The similarities and differences in behaviour between these objects are analyzed and discussed in the context of existing theoretical models. Furthermore, we present time-dependent 3.08 micron angular diameter measurements, probing for the first time these zones of probable dust formation, which show unforeseen sizes and are consistently out of phase with other NIR layers shown in this study. The S-type Mira chi Cyg exhibits significantly different behaviour compared to the M-type Miras in this study.

Download