Do you want to publish a course? Click here

The Australia Telescope 20 GHz (AT20G) Survey: The Bright Source Sample

140   0   0.0 ( 0 )
 Added by Marcella Massardi
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Australia Telescope 20 GHz (AT20G) Survey is a blind survey of the whole Southern sky at 20 GHz (with follow-up observations at 4.8 and 8.6 GHz) carried out with the Australia Telescope Compact Array (ATCA) from 2004 to 2007. The Bright Source Sample (BSS) is a complete flux-limited subsample of the AT20G Survey catalogue comprising 320 extragalactic (|b|>1.5 deg) radio sources south of dec = -15 deg with S(20 GHz) > 0.50 Jy. Of these, 218 have near simultaneous observations at 8 and 5 GHz. In this paper we present an analysis of radio spectral properties in total intensity and polarisation, size, optical identifications and redshift distribution of the BSS sources. The analysis of the spectral behaviour shows spectral curvature in most sources with spectral steepening that increases at higher frequencies (the median spectral index alpha, assuming Spropto u^alpha, decreases from alpha_{4.8}^{8.6}=0.11 between 4.8 and 8.6 GHz to alpha_{8.6}^{20}=-0.16 between 8.6 and 20 GHz), even if the sample is dominated by flat spectra sources (85 per cent of the sample has alpha_{8.6}^{20}>-0.5). The almost simultaneous spectra in total intensity and polarisation allowed us a comparison of the polarised and total intensity spectra: polarised fraction slightly increases with frequency, but the shapes of the spectra have little correlation. Optical identifications provided an estimation of redshift for 186 sources with a median value of 1.20 and 0.13 respectively for QSO and galaxies.



rate research

Read More

118 - Tara Murphy 2009
We present the full source catalogue from the Australia Telescope 20 GHz (AT20G) Survey. The AT20G is a blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array (ATCA) from 2004 to 2008, and covers the whole sky south of declination 0 deg. The AT20G source catalogue presented here is an order of magnitude larger than any previous catalogue of high-frequency radio sources, and includes 5890 sources above a 20 GHz flux-density limit of 40 mJy. All AT20G sources have total intensity and polarisation measured at 20 GHz, and most sources south of declination -15 deg also have near-simultaneous flux-density measurements at 5 and 8 GHz. A total of 1559 sources were detected in polarised total intensity at one or more of the three frequencies. We detect a small but significant population of non-thermal sources that are either undetected or have only weak detections in low-frequency catalogues. We introduce the term Ultra-Inverted Spectrum (UIS) to describe these radio sources, which have a spectral index alpha(5, 20) > +0.7 and which constitute roughly 1.2 per cent of the AT20G sample. The 20 GHz flux densities measured for the strongest AT20G sources are in excellent agreement with the WMAP 5-year source catalogue of Wright et al. (2009), and we find that the WMAP source catalogue is close to complete for sources stronger than 1.5 Jy at 23 GHz.
Our current understanding of radio-loud AGN comes predominantly from studies at frequencies of 5 GHz and below. With the recent completion of the Australia Telescope 20 GHz (AT20G) survey, we can now gain insight into the high-frequency radio properties of AGN. This paper presents supplementary information on the AT20G sources in the form of optical counterparts and redshifts. Optical counterparts were identified using the SuperCOSMOS database and redshifts were found from either the 6dF Galaxy survey or the literature. We also report 144 new redshifts. For AT20G sources outside the Galactic plane, 78.5% have optical identifications and 30.9% have redshift information. The optical identification rate also increases with increasing flux density. Targets which had optical spectra available were examined to obtain a spectral classification. There appear to be two distinct AT20G populations; the high luminosity quasars that are generally associated with point-source optical counterparts and exhibit strong emission lines in the optical spectrum, and the lower luminosity radio galaxies that are generally associated with passive galaxies in both the optical images and spectroscopic properties. It is suggested that these different populations can be associated with different accretion modes (cold-mode or hot-mode). We find that the cold-mode sources have a steeper spectral index and produce more luminous radio lobes, but generally reside in smaller host galaxies than their hot-mode counterparts. This can be attributed to the fact that they are accreting material more efficiently. Lastly, we compare the AT20G survey with the S-cubed semi-empirical (S3-SEX) models and conclude that the S3-SEX models need refining to correctly model the compact cores of AGN. The AT20G survey provides the ideal sample to do this.
PSR J1357$-$6429 is a young and energetic radio pulsar detected in X-rays and $gamma$-rays. It powers a compact pulsar wind nebula with a jet visible in X-rays and a large scale plerion detected in X-ray and TeV ranges. Previous multiwavelength studies suggested that the pulsar has a significant proper motion of about 180 mas yr$^{-1}$ implying an extremely high transverse velocity of about 2000 km s$^{-1}$. In order to verify that, we performed radio-interferometric observations of PSR J1357$-$6429 with the the Australia Telescope Compact Array (ATCA) in the 2.1 GHz band. We detected the pulsar with a mean flux density of $212pm5$ $mu$Jy and obtained the most accurate pulsar position, RA = 13:57:02.525(14) and Dec = $-$64:29:29.89(15). Using the new and archival ATCA data, we did not find any proper motion and estimated its 90 per cent upper limit $mu < 106$ mas yr$^{-1}$. The pulsar shows a highly polarised single pulse, as it was earlier observed at 1.4 GHz. Spectral analysis revealed a shallow spectral index $alpha_{ u}$ = $0.5 pm 0.1$. Based on our new radio position of the pulsar, we disclaim its optical counterpart candidate reported before.
The Australia Telescope Large Area Survey (ATLAS) has surveyed seven square degrees of sky around the Chandra Deep Field South (CDFS) and the European Large Area ISO Survey - South 1 (ELAIS-S1) fields at 1.4 GHz. ATLAS aims to reach a uniform sensitivity of $10 mu$Jy beam$^{-1}$ rms over the entire region with data release 1 currently reaching $sim30 mu$Jy beam$^{-1}$ rms. Here we present 466 new spectroscopic redshifts for radio sources in ATLAS as part of our optical follow-up program. Of the 466 radio sources with new spectroscopic redshifts, 142 have star-forming optical spectra, 282 show evidence for AGN in their optical spectra, 10 have stellar spectra and 32 have spectra revealing redshifts, but with insufficient features to classify. We compare our spectroscopic classifications with two mid-infrared diagnostics and find them to be in broad agreement. We also construct the radio luminosity function for star-forming galaxies to z $= 0.5$ and for AGN to z $= 0.8$. The radio luminosity function for star-forming galaxies appears to be in good agreement with previous studies. The radio luminosity function for AGN appears higher than previous studies of the local AGN radio luminosity function. We explore the possibility of evolution, cosmic variance and classification techniques affecting the AGN radio luminosity function. ATLAS is a pathfinder for the forthcoming EMU survey and the data presented in this paper will be used to guide EMUs survey design and early science papers.
116 - T. Wong 2002
A new astronomical window into the southern skies has been opened with the high-frequency upgrade to the Australia Telescope Compact Array (ATCA), which allows radio-interferometric mapping of sources at wavelengths as short as 3mm. In anticipation of the upgrades completion, a two-day workshop was held at the University of Melbourne in November 2001. The workshop covered a diverse range of fields, tied together by a common theme of identifying key areas where ATCA observations can have an impact. More than half of the talks were concerned with molecular clouds and star formation, with the remainder covering topics such as molecular gas in the Galactic Centre, Seyfert nuclei, and high-redshift objects. Some early results from the 3mm and 12mm prototype systems were also presented. In consultation with the speakers, we are presenting in this article a summary of the talks. The original slides are available at http://www.atnf.csiro.au/whats_on/workshops/mm_science2001/ .
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا