This paper analyzes correlations in patterns of trading of different members of the London Stock Exchange. The collection of strategies associated with a member institution is defined by the sequence of signs of net volume traded by that institution in hour intervals. Using several methods we show that there are significant and persistent correlations between institutions. In addition, the correlations are structured into correlated and anti-correlated groups. Clustering techniques using the correlations as a distance metric reveal a meaningful clustering structure with two groups of institutions trading in opposite directions.
We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) technique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing FSE were found. First transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the markets state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash, to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela-Chakraborti-Kaski-Kertesz for S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets.
Long memory and volatility clustering are two stylized facts frequently related to financial markets. Traditionally, these phenomena have been studied based on conditionally heteroscedastic models like ARCH, GARCH, IGARCH and FIGARCH, inter alia. One advantage of these models is their ability to capture nonlinear dynamics. Another interesting manner to study the volatility phenomena is by using measures based on the concept of entropy. In this paper we investigate the long memory and volatility clustering for the SP 500, NASDAQ 100 and Stoxx 50 indexes in order to compare the US and European Markets. Additionally, we compare the results from conditionally heteroscedastic models with those from the entropy measures. In the latter, we examine Shannon entropy, Renyi entropy and Tsallis entropy. The results corroborate the previous evidence of nonlinear dynamics in the time series considered.
We study the structure of locational marginal prices in day-ahead and real-time wholesale electricity markets. In particular, we consider the case of two North American markets and show that the price correlations contain information on the locational structure of the grid. We study various clustering methods and introduce a type of correlation function based on event synchronization for spiky time series, and another based on string correlations of location names provided by the markets. This allows us to reconstruct aspects of the locational structure of the grid.
We study the crash dynamics of the Warsaw Stock Exchange (WSE) by using the Minimal Spanning Tree (MST) networks. We find the transition of the complex network during its evolution from a (hierarchical) power law MST network, representing the stable state of WSE before the recent worldwide financial crash, to a superstar-like (or superhub) MST network of the market decorated by a hierarchy of trees (being, perhaps, an unstable, intermediate market state). Subsequently, we observed a transition from this complex tree to the topology of the (hierarchical) power law MST network decorated by several star-like trees or hubs. This structure and topology represent, perhaps, the WSE after the worldwide financial crash, and could be considered to be an aftershock. Our results can serve as an empirical foundation for a future theory of dynamic structural and topological phase transitions on financial markets.
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets inspired from statistical mechanics [24] to explore the empirical findings. We show that as the interaction among the interacting traders strengthens both the returns and the trading volume present power-law behavior.