Comments On Orbits of automorphism groups of fields


Abstract in English

Let $R$ be a commutative $k-$algebra over a field $k$. Assume $R$ is a noetherian, infinite, integral domain. The group of $k-$automorphisms of $R$,i.e.$Aut_k(R)$ acts in a natural way on $(R-k)$.In the first part of this article, we study the structure of $R$ when the orbit space $(R-k)/Aut_k(R)$ is finite.We note that most of the results, not particularly relevent to fields, in [1,S 2] hold in this case as well. Moreover, we prove that $R$ is a field. In the second part, we study a special case of the Conjecture 2.1 in [1] : If $K/k$ is a non trivial field extension where $k$ is algebraically closed and $mid (K-k)/Aut_k(K) mid = 1$ then $K$ is algebraically closed. In the end, we give an elementary proof of [1,Theorem 1.1] in case $K$ is finitely generated over its prime subfield.

Download