Do you want to publish a course? Click here

The NuMI Beam at FNAL and its use for Cross Section Measurements

102   0   0.0 ( 0 )
 Added by Sacha E. Kopp
 Publication date 2007
  fields
and research's language is English
 Authors Sacha E. Kopp




Ask ChatGPT about the research

The Neutrinos at the Main Injector (NuMI) facility at Fermilab began operations in late 2004. NuMI will deliver an intense muon neutrino beam of variable energy (2-20 GeV). Several aspects of the design and results from runs of the MINOS experiment are reviewed. I also discuss technique to measure directly the neutrino flux using a muon flux system at the end of the NuMI line.



rate research

Read More

75 - D.Indurthy , S.Kopp , Z.Pavlovich 2004
The Neutrinos at the Main Injector (NuMI) project will extract 120 GeV protons from the FNAL Main Injector in 8.56usec spills of 4E13 protons every 1.9 sec. We have designed secondary emission monitor (SEM) detectors to measure beam profile and halo along the proton beam transport line. The SEM?s are Ti foils 5um in thickness segmented in either 1?mm or 0.5?mm pitch strips, resulting in beam loss ~5E-6. We discuss aspects of the mechanical design, calculations of expected beam heating, and results of a beam test at the 8 GeV transport line to MiniBoone at FNAL.
66 - S. Kopp 2006
The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino beam which produces muon neutrinos by focusing a beam of mesons into a long evacuated decay volume. We have built four arrays of ionization chambers to monitor the position and intensity of the hadron and muon beams associated with neutrino production at locations downstream of the decay volume. This article describes the chambers construction, calibration, and commissioning in the beam.
234 - D.Indurthy 2004
The Neutrinos at the Main Injector (NuMI) beamline will deliver an intense muon neutrino beam by focusing a beam of mesons into a long evacuated decay volume. The beam must be steered with 1 mRad angular accuracy toward the Soudan Underground Laboratory in northern Minnesota. We have built 4 arrays of ionization chambers to monitor the neutrino beam direction and quality. The arrays are located at 4 stations downstream of the decay volume, and measure the remnant hadron beam and tertiary muons produced along with neutrinos in meson decays. We review how the monitors will be used to make beam quality measurements, and as well we review chamber construction details, radiation damage testing, calibration, and test beam results.
The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target , and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam.
Knowledge of the neutrino flux produced by the Neutrinos at the Main Injector (NuMI) beamline is essential to the neutrino oscillation and neutrino interaction measurements of the MINERvA, MINOS+, NOvA and MicroBooNE experiments at Fermi National Accelerator Laboratory. We have produced a flux prediction which uses all available and relevant hadron production data, incorporating measurements of particle production off of thin targets as well as measurements of particle yields from a spare NuMI target exposed to a 120 GeV proton beam. The result is the most precise flux prediction achieved for a neutrino beam in the one to tens of GeV energy region. We have also compared the prediction to in situ measurements of the neutrino flux and find good agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا