Do you want to publish a course? Click here

Albedos and diameters of three Mars Trojan asteroids

325   0   0.0 ( 0 )
 Added by David E. Trilling
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observed the Mars Trojan asteroids (5261) Eureka and (101429) 1998 VF31 and the candidate Mars Trojan 2001 FR127 at 11.2 and 18.1 microns using Michelle on the Gemini North telescope. We derive diameters of 1.28, 0.78, and <0.52 km, respectively, with corresponding geometric visible albedos of 0.39, 0.32, and >0.14. The albedos for Eureka and 1998 VF31 are consistent with the taxonomic classes and compositions (S(I)/angritic and S(VII)/achrondritic, respectively) and implied histories presented in a companion paper by Rivkin et al. Eurekas surface likely has a relatively high thermal inertia, implying a thin regolith that is consistent with predictions and the small size that we derive.



rate research

Read More

We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited to measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of Solar system objects. Using a NEATM thermal model fitting routine we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributions of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE dataset and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.
The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 um and 4.6 um of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper we present thermal model fits of asteroid diameters for 170 NEOs and 6110 MBAs detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1-sigma) of previously measured values. Diameters for the MBAs are within 17% (1-sigma). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.
We have used the XSHOOTER echelle spectrograph on the European Southern Obseratory (ESO) Very Large Telescope (VLT) to obtain UVB-VIS-NIR (ultraviolet-blue (UVB), visible (VIS) and near-infrared (NIR)) reflectance spectra of two members of the Eureka family of L5 Mars Trojans, in order to test a genetic relationship to Eureka. In addition to obtaining spectra, we also carried out VRI photometry of one of the VLT targets using the 2-m telescope at the Bulgarian National Astronomical Observatory - Rozhen and the two-channel focal reducer. We found that these asteroids belong to the olivine-dominated A, or Sa, taxonomic class. As Eureka itself is also an olivine-dominated asteroid, it is likely that all family asteroids share a common origin and composition. We discuss the significance of these results in terms of the origin of the martian Trojan population.
The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids and 8,885 other asteroids. $84%$ of the near-Earth asteroids did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within $ pm sim20%$ and $pmsim40%$, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large ($>100$ m), and have low albedos.
We present preliminary diameters and albedos for 7,959 asteroids detected in the first year of the NEOWISE Reactivation mission. 201 are near-Earth asteroids (NEAs). 7,758 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using WISE or NEOWISE thermal measurements. Diameters are determined to an accuracy of ~20% or better. If good-quality H magnitudes are available, albedos can be determined to within ~40% or better.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا