No Arabic abstract
We report on the growth and properties of high quality bicolor oxide superlattices, composed of two perovskites out of BaTiO3, CaTiO3, and SrTiO3. The artificially grown superlattices are structurally unique and have a macroscopically homogeneous phase, which is not feasible to recreate in bulk form. By artificial structuring, it is found that the polarization of such superlattices can be highly increased as compared to pseudo-binary ceramics with the same overall composition. Such strong enhancement in superlattice is attributed to newly-developed ionic motions of A-site cations at the hetero-interfaces due to the interfacial coupling of electrostatic and elastic interactions, which cannot be found in single phase materials.
Heterostructured material systems devoid of ferroic components are presumed not to display ordering associated with ferroelectricity. In heterostructures composed of transition metal oxides, however, the disruption introduced by an interface can affect the balance of the competing interactions among electronic spins, charges and orbitals. This has led to the emergence of properties absent in the original building blocks of a heterostructure, including metallicity, magnetism and superconductivity. Here we report the discovery of ferroelectricity in artificial tri-layer superlattices consisting solely of non-ferroelectric NdMnO3/SrMnO3/LaMnO3 layers. Ferroelectricity was observed below 40 K exhibiting strong tunability by superlattice periodicity. Furthermore, magnetoelectric coupling resulted in 150% magnetic modulation of the polarization. Density functional calculations indicate that broken space inversion symmetry and mixed valency, because of cationic asymmetry and interfacial polar discontinuity, respectively, give rise to the observed behavior. Our results demonstrate the engineering of asymmetric layered structures with emergent ferroelectric and magnetic field tunable functions distinct from that of normal devices, for which the components are typically ferroelectrics.
We study the transport properties in SrVO3/LaVO3 (SVO/LVO) superlattices deposited on SrTiO3 (STO) substrates. We show that the electronic conduction occurs in the metallic LVO layers with a galvanomagnetism typical of a 2D Fermi surface. In addition, a Kondo-like component appears in both the thermal variation of resistivity and the magnetoresistance. Surprisingly, in this system where the STO interface does not contribute to the measured conduction, the Kondo correction is strongly anisotropic. We show that the growth temperature allows a direct control of this contribution. Finally, the key role of vanadium mixed valency stabilized by oxygen vacancies is enlightened.
Topological polar vortices that are the electric analogues of magnetic objects, present great potential in applications of future nanoelectronics due to their nanometer size, anomalous dielectric response, and chirality. To enable the functionalities, it is prerequisite to manipulate the polar states and chirality by using external stimuli. Here, we probe the evolutions of polar state and chirality of polar vortices in PbTiO3/SrTiO3 superlattices under electric field by using atomically resolved in situ scanning transmission electron microscopy and phase-field simulations. We find that the adjacent clockwise and counterclockwise vortex usually have opposite chirality. The phase-field simulations suggest that the rotation reversal or axial polarization switching can lead to the chirality change. Guided by which, we experimentally validate that the vortex rotation direction can be changed by applying and subsequently removing of electric fields, offering a potential strategy to manipulate the vortex chirality. The revealed details of dynamic behavior for individual polar vortices at atomic scale and the proposed strategy for chirality manipulation provide fundamentals for future device applications.
Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials and provide more attractive potential to realize the magnetoelectric functions. Here we perform a first-principles study on LaAlO$_3$/PbTiO$_3$ superlattices. Although neither of the components is magnetic, magnetic moments emerge at the ferroelectric domain walls of PbTiO$_3$ in these superlattices. Such a twist between ferroelectric domain and local magnetic moment, not only manifests an interesting type of multiferroicity, but also is possible useful to pursuit the electrical-control of magnetism in nanoscale heterostructures.
We construct ferroelectric (LuFeO3)m/(LuFe2O4) superlattices with varying index m to study the effect of confinement on topological defects. We observe a thickness-dependent transition from neutral to charged domain walls and the emergence of fractional vortices. In thin LuFeO3 layers, the volume fraction of domain walls grows, lowering the symmetry from P63cm to P3c1 before reaching the non-polar P63/mmc state, analogous to the high-temperature ferroelectric to paraelectric transition. Our study shows how dimensional confinement stabilizes textures beyond those in bulk ferroelectric systems.