No Arabic abstract
We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar, SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 solar masses, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 solar masses (95% confidence level). Such a low mass is inconsistent with brown dwarf models, and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts, dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approximately 13 days and no earlier outbursts were found in archival data.
SWIFT J1756.9-2508 is one of the few accreting millisecond pulsars (AMPs) discovered to date. We report here the results of our analysis of its aperiodic X-ray variability, as measured with the Rossi X-ray Timing Explorer during the 2007 outburst of the source. We detect strong (~35%) flat-topped broadband noise throughout the outburst with low characteristic frequencies (~0.1 Hz). This makes SWIFT J1756.9-2508 similar to the rest of AMPs and to other low luminosity accreting neutron stars when they are in their hard states, and enables us to classify this AMP as an atoll source in the extreme island state. We also find a hard tail in its energy spectrum extending up to 100 keV, fully consistent with such source and state classification.
The accreting millisecond X-ray pulsar Swift J1756.9$-$2508 went into outburst in April 2018 and June 2019, 8.7 yr after the previous activity period. We investigated the temporal, timing and spectral properties of these two outbursts using data from NICER, XMM-Newton, NuSTAR, INTEGRAL, Swift and Insight-HXMT. The two outbursts exhibited similar broad-band spectra and X-ray pulse profiles. For the first time, we report the detection of the pulsed emission up to $sim100$ keV observed by Insight-HXMT during the 2018 outburst. We also found the pulsation up to $sim60$ keV observed by NICER and NuSTAR during the 2019 outburst. We performed a coherent timing analysis combining the data from two outbursts. The binary system is well described by a constant orbital period over a time span of $sim12$ years. The time-averaged broad-band spectra are well fitted by an absorbed thermal Comptonization model in a slab geometry with the electron temperature $kT_{rm e}=40$-50 keV, Thomson optical depth $tausim 1.3$, blackbody seed photon temperature $kT_{rm bb,seed}sim $0.7-0.8 keV and hydrogen column density of $N_{rm H}sim 4.2times10^{22}$ cm$^{-2}$. We searched the available data for type-I (thermonuclear) X-ray bursts, but found none, which is unsurprising given the estimated low peak accretion rate ($approx0.05$ of the Eddington rate) and generally low expected burst rates for hydrogen-poor fuel. Based on the history of four outbursts to date, we estimate the long-term average accretion rate at roughly $5times10^{-12} M_odot,{rm yr}^{-1}$ for an assumed distance of 8 kpc. The expected mass transfer rate driven by gravitational radiation in the binary implies the source can be no closer than 4 kpc.
We present a timing analysis of the 2009 outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508, and a re-analysis of the 2007 outburst. The source shows a short recurrence time of only ~2 years between outbursts. Thanks to the approximately 2 year long baseline of data, we can constrain the magnetic field of the neutron star to be 0.4x10^8 G < B < 9x10^8 G, which is within the range of typical accreting millisecond pulsars. The 2009 timing analysis allows us to put constraints on the accretion torque: the spin frequency derivative within the outburst has an upper limit of $|dot{ u}| < 3x10^-13 Hz/s at the 95% confidence level. A study of pulse profiles and their evolution during the outburst is analyzed, suggesting a systematic change of shape that depends on the outburst phase.
We report on observations of the sixth accretion-powered millisecond pulsar, IGR J00291+5934, with the Rossi X-Ray Timing Explorer. The source is a faint, recurrent X-ray transient initially identified by INTEGRAL. The 599 Hz (1.67 ms) pulsation had a fractional rms amplitude of 8% in the 2-20 keV range, and its shape was approximately sinusoidal. The pulses show an energy-dependent phase delay, with the 6-9 keV pulses arriving up to 85 us earlier than those at lower energies. No X-ray bursts, dips, or eclipses were detected. The neutron star is in a circular 2.46 hr orbit with a very low-mass donor, most likely a brown dwarf. The binary parameters of the system are similar to those of the first known accreting millisecond pulsar, SAX J1808.4-3658. Assuming that the mass transfer is driven by gravitational radiation and that the 2004 outburst fluence is typical, the 3-yr recurrence time implies a distance of at least 4 kpc.
We present the discovery of a binary millisecond pulsar (MSP), PSR J2322$-$2650, found in the Southern section of the High Time Resolution Universe survey. This system contains a 3.5-ms pulsar with a $sim10^{-3}$ M$_{odot}$ companion in a 7.75-hour circular orbit. Follow-up observations at the Parkes and Lovell telescopes have led to precise measurements of the astrometric and spin parameters, including the period derivative, timing parallax, and proper motion. PSR J2322$-$2650 has a parallax of $4.4pm1.2$ mas, and is thus at an inferred distance of $230^{+90}_{-50}$ pc, making this system a candidate for optical studies. We have detected a source of $Rapprox26.4$ mag at the radio position in a single $R$-band observation with the Keck Telescope, and this is consistent with the blackbody temperature we would expect from the companion if it fills its Roche lobe. The intrinsic period derivative of PSR J2322$-$2650 is among the lowest known, $4.4(4)times10^{-22}$ s s$^{-1}$, implying a low surface magnetic field strength, $4.0(4)times10^7$ G. Its mean radio flux density of 160 $mu$Jy combined with the distance implies that its radio luminosity is the lowest ever measured, $0.008(5)$ mJy kpc$^2$. The inferred population of these systems in the Galaxy may be very significant, suggesting that this is a common MSP evolutionary path.